Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Type 1 삼성분계 액액평형의 임계점 추산방법
A Method to Estimate Plait Points of Type 1 Ternary Liquid-Liquid Equilibria
HWAHAK KONGHAK, April 1996, 34(2), 149-153(5), NONE
Download PDF
Abstract
Type 1인 삼성분계 액액평형의 임계점을 추산하기 위한 새로운 방법을 제안한다. 일반적으로 열역학 model을 이용하여 대응선을 상관 관계시킨 결과로부터 추산한 임계점은 실험적으로 결정한 용해도 곡선위에 위치하지 않는다. 또 상관관계식을 이용하는 경우에는 대응선뿐만 아니라 용해도 곡선의 data도 필요하게 된다. 본 연구에서 제안한 방법에서는 대응선 길이의 대수값과 임계점까지의 거리의 대수값의 관계가 Widom의 order parameter식을 만족할 때까지 추정한 임계점에서의 한 성분의 중량분율과 나머지 두 성분의 중량분율비를 변화시킨다. 이 방법으로 여러 삼성분계의 임계점을 추산하였으며, 그 결과들은 Treybal 등의 방법을 이용하여 얻은 결과와 비슷한 만족도를 보였다. 그러나, 이 논문에서 제안한 방법에서는 대응선 data만을 사용하는 반면에 Othmer와 Tobias의 상관 관계식을 이용한 Treybal 등의 방법을 사용하기 위해서는 대응선 data뿐만 아니라 용해도 곡선 data도 필요하다는 것을 강조할 필요가 있다.
To estimate plait points of ternary liquid-liquid equilibria(LLE) of type 1, a novel method is proposed. In general, the plait points resulting from correlation of the tie lines with the thermodynamic models are not located on the experimentally determined binodal curves. In addition, determination of the plait points using the correlation methods requires binodal curve data as well as the tie line data. In the proposed method, two parameters, weight fraction of a component and the ratio of weight fractions of remaining two components, are varied until linearity between logarithmic tie-line length and logarithmic distance of the tie-line from the plait point is attained so that the order parameter equation of Widom is satisfied. With this method, plait points of several ternary systems are estimated and it turns out that the results are favorably comparable with the results obtained by the method proposed by Treybal et al. However, it needs to emphasize that the method proposed in this paper uses only tie-line data while the method of Treybal et al. with the correlation of Othmer and Tobias requires experimental binodal curve data in addition to the tie-line data.
References
Sorensen JM, Ph.D. Thesis, Institute for Kemiteknik, Lyngby, Denmark (1980)
Hand DB, J. Phys. Chem., 34, 1961 (1930)
Othmer DF, Tobias PE, Ind. Eng. Chem., 34, 690 (1942)
Bueno J, Ph.D. Thesis, University of Salamanca, Salamanca, Spain (1968)
Treybal RE, Weber LD, Daley JF, Ind. Eng. Chem., 38, 817 (1946)
Fleming PD, Vinatieri JE, AIChE J., 25, 493 (1979)
dePablo JJ, Prausnitz JM, AIChE J., 34, 1595 (1989)
Kang CH, HWAHAK KONGHAK, 33(2), 243 (1995)
Widorn B, J. Chem. Phys., 46, 3324 (1967)
Zollweg JA, J. Chem. Phys., 55, 1430 (1971)
Maron JM, "Numerical Analysis," Macmillan, NY (1982)
DeFre RD, Vehoeye LA, J. Appl. Chem. Biotechnol., 26, 469 (1976)
Bartolome AL, Pazos C, Caco J, J. Chem. Eng. Data, 35, 285 (1990)
Hand DB, J. Phys. Chem., 34, 1961 (1930)
Othmer DF, Tobias PE, Ind. Eng. Chem., 34, 690 (1942)
Bueno J, Ph.D. Thesis, University of Salamanca, Salamanca, Spain (1968)
Treybal RE, Weber LD, Daley JF, Ind. Eng. Chem., 38, 817 (1946)
Fleming PD, Vinatieri JE, AIChE J., 25, 493 (1979)
dePablo JJ, Prausnitz JM, AIChE J., 34, 1595 (1989)
Kang CH, HWAHAK KONGHAK, 33(2), 243 (1995)
Widorn B, J. Chem. Phys., 46, 3324 (1967)
Zollweg JA, J. Chem. Phys., 55, 1430 (1971)
Maron JM, "Numerical Analysis," Macmillan, NY (1982)
DeFre RD, Vehoeye LA, J. Appl. Chem. Biotechnol., 26, 469 (1976)
Bartolome AL, Pazos C, Caco J, J. Chem. Eng. Data, 35, 285 (1990)