Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
얼음 미립자 제트에 의한 표면 세척(I) 에어러졸의 제조와 저압 Impaction
Surface Cleaning by Ice-Particle Jet(I) - Preparation of Aerosols and Its Low-Pressure Impaction-
HWAHAK KONGHAK, June 1996, 34(3), 346-355(10), NONE
Download PDF
Abstract
얼음 미세 입자들에 의한 저압 impaction을 실험적으로 연구하였다. 먼저 미세한 물방울들로 이루어진 에어러졸을 2 유체 분무, 초음파 분무, 그리고 수증기의 응축에 의해 제조하였다. 이 때 물방울들의 평균 크기와 전체 수 농도는 제법이나 각 제법에서의 공정변수들에 의해 넓은 범위에서 조절이 가능하였다. 에어러졸은 다음 액체질수 bath와의 열전달에 의해 냉각되어 물방울은 응고되었다. 마지막으로 고 속의 얼음 미립자 제트가 노즐을 통한 저압 chamber로의 팽창에 의해 만들어지고 기판이 이의 충돌을 받게 된다. Impaction의 강도는 얼음 미립자의 크기와 수 농도는 물론 chamber의 압력, impaction 각도, 그리고 노즐-기판간의 거리에 의해 변화하였다.
Low-pressure impaction of fine ice particles has been experimentally investigated. First, aerosols consisting of fine water droplets were prepared by two-fluid and ultrasonic nebulizations, and water-vapor condensation. The average size and total number concentration of the droplets were controlled in wide range by the preparation methods and the process variables set for each preparation. The aerosols were next cooled by heat transfer in liquid nitrogen bath and the droplets were solidified. Finally, high-velocity jet of the ice particles was produced by expansion through a nozzle into low-pressure chamber where a substrate is impacted by them. The strength of impaction on the substrate varies with the chamber pressure, impaction angle, and nozzle-to-substrate distance as well as the size and number concentration of the ice particles.
References
Skidmore K, Semicond. Int., 80(Aug.) (1987)
Ruzyllo J, Solid State Technol., S1(Mar.) (1990)
Hayashi C, U.S. Patent, 4,747,421 (1988)
Peterson RV, U.S. Patent, 5,315,793 (1994)
McDermott WT, U.S. Patent, 5,294,261 (1992)
Endo S, Ohmori T, U.S. Patent, 5,081,068 (1992)
Ohmori T, Fukumoto T, Kato T, Semiconductor Cleaning Technology/1989, 182, ed. by J. Ruzyllo and R.E. Novak (1990)
Rodes C, Smith T, Crouse R, Ramachandran G, Aerosol Sci. Technol., 13, 220 (1990)
Shin DS, M.S. Thesis, Choong Ang Univ., Seoul, Korea (1995)
Lee SM, Chon BD, Kim SG, Korean J. Chem. Eng., 8(4), 220 (1991)
Chon BD, M.S. Thesis, Choong Ang Univ., Seoul Korea (1991)
Hinds WC, "Aerosol Technology," John Wiley & Sons, New York, NY (1982)
DeNevers N, "Fluid Mechanics for Chemical Engineers," 2nd ed., McGraw-Hill, New York, NY (1991)
Ruzyllo J, Solid State Technol., S1(Mar.) (1990)
Hayashi C, U.S. Patent, 4,747,421 (1988)
Peterson RV, U.S. Patent, 5,315,793 (1994)
McDermott WT, U.S. Patent, 5,294,261 (1992)
Endo S, Ohmori T, U.S. Patent, 5,081,068 (1992)
Ohmori T, Fukumoto T, Kato T, Semiconductor Cleaning Technology/1989, 182, ed. by J. Ruzyllo and R.E. Novak (1990)
Rodes C, Smith T, Crouse R, Ramachandran G, Aerosol Sci. Technol., 13, 220 (1990)
Shin DS, M.S. Thesis, Choong Ang Univ., Seoul, Korea (1995)
Lee SM, Chon BD, Kim SG, Korean J. Chem. Eng., 8(4), 220 (1991)
Chon BD, M.S. Thesis, Choong Ang Univ., Seoul Korea (1991)
Hinds WC, "Aerosol Technology," John Wiley & Sons, New York, NY (1982)
DeNevers N, "Fluid Mechanics for Chemical Engineers," 2nd ed., McGraw-Hill, New York, NY (1991)