Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
모더나이트/Υ-알루미나의 특성과 노르말-데칸의 분해 활성
Characteristics of Mordenite/γ-Alumina and Their Cracking Activity for n-Decane
HWAHAK KONGHAK, June 1996, 34(3), 363-368(6), NONE
Download PDF
Abstract
수소형 모더나이트롤 스팀 처리한 것(SM)과 SM을 다시 염산과 스팀을 반복 처리한 것(DM)을 만들고 이를 질산알루미늄 용액에 넣고 암모니아수로 pH7.8과 9,.5가 되게하여 혼합된 촉매[SM(또는 DM)/A(7.8 또는 9.5)]를 제조하였다. 이들 시료에 대해 질소 흡/탈착 등온선을 얻고 이로부터 비표면적과 세공성을 구하였다. 또한 피리딘 흡착으로 산 특성을 연구하였고 미소 반응기에서 노르말-데칸의 분해 반응을 실시하였다. 노르말-데칸의 전화율은 pH7.8보다 pH9.5에서 혼합된 촉매에서 높았다. 이것은 세공구조와 Bronsted 산량 차이로 생각된다. 또한 이소 파라핀과 아로마틱의 선택성은 중세공이 발달된 DM이 혼합된 촉매에서 높은 것으로 모더나이트의 중세공의 영향을 받았다.
H-mordenites treated by steaming at 500℃(SM) was further treated by HCI(6N)/steaming(DM).These samples were mixed with aluminum hydroxide which precipitated in aluminium nitrate solution at pH of 7.8 and 9.5 Nitrogen adsorption/desorption isotherms for surface area and pore size distribution, pyridine adsorption for acidity, and catalytic cracking of n-decane were carried out. The samples prepared at pH 9.5 showed higher catalytic activity in the cracking than those at pH 7.8. This may be due to the difference in the Bronsted acid amount and pore structure of the samples. We also observed that the samples mixed with DM which has developed mesopore were higher selectivity for iso-paraffines and aromatics.
References
Rawlence DJ, Gosling K, Appl. Catal., 43, 213 (1988)
Biswas J, Maxwell IE, Appl. Catal., 63, 197 (1990)
Lee KH, Ha BH, HWAHAK KONGHAK, 34(1), 28 (1996)
Campagna R, Kowalczyk D, Letzsch W, Wilcox J, "Fluid Catalytic Cracking Process Technology," Section 8, 6 (1992)
Corma A, Grade M, Fornes V, Appl. Catal., 66, 45 (1990)
Miller Y, Hopkins PD, Meyers BL, Ray GJ, Roginskl RT, Zajac GW, Rosenbaum NH, J. Catal., 138, 115 (1992)
Mostad HB, Riis TU, Ellestad OH, Appl. Catal., 64, 119 (1990)
Mostad HB, Riis TU, Ellestad OH, Appl. Catal., 58, 105 (1990)
Mori N, Nishiyama S, Tsuruya S, Masai M, Appl. Catal., 74, 37 (1991)
Froment GF, Meyer JD, Derouane EG, J. Catal., 124, 391 (1990)
Rajagopalan K, Peters AW, J. Catal., 106, 410 (1987)
McGreavy C, Andrade JS, Rajagopalan K, J. Catal., 131, 319 (1991)
Guisnet M, Magnoux P, Appl. Catal., 54, 1 (1989)
Biswas J, Maxwell IE, Appl. Catal., 63, 197 (1990)
Lee KH, Ha BH, HWAHAK KONGHAK, 34(1), 28 (1996)
Campagna R, Kowalczyk D, Letzsch W, Wilcox J, "Fluid Catalytic Cracking Process Technology," Section 8, 6 (1992)
Corma A, Grade M, Fornes V, Appl. Catal., 66, 45 (1990)
Miller Y, Hopkins PD, Meyers BL, Ray GJ, Roginskl RT, Zajac GW, Rosenbaum NH, J. Catal., 138, 115 (1992)
Mostad HB, Riis TU, Ellestad OH, Appl. Catal., 64, 119 (1990)
Mostad HB, Riis TU, Ellestad OH, Appl. Catal., 58, 105 (1990)
Mori N, Nishiyama S, Tsuruya S, Masai M, Appl. Catal., 74, 37 (1991)
Froment GF, Meyer JD, Derouane EG, J. Catal., 124, 391 (1990)
Rajagopalan K, Peters AW, J. Catal., 106, 410 (1987)
McGreavy C, Andrade JS, Rajagopalan K, J. Catal., 131, 319 (1991)
Guisnet M, Magnoux P, Appl. Catal., 54, 1 (1989)