Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
초임계 이산화탄소에 대한 분산염료의 용해도
Solubility of Disperse Dyes in Supercritical Carbon Dioxide
HWAHAK KONGHAK, June 1996, 34(3), 379-382(4), NONE
Download PDF
Abstract
반유통형 평형추출장치를 사용하여 초임계 이산화탄소 중에 분산염료인 C.I. Disperse Red 60과 Blue 79의 용해도를 333.2K, 392.2K, 423.2K의 일정한 온도와 15-29 MPa의 압력범위에서 측정하였다. 위의 실험조건에서 분산염료는 몰분율로서 10-6-10-9 정도이며, 매우 작은 용해도를 나타내었다. 온도와 압력의 변화에 따른 용해도의 영향이 검토되었으며 동일한 밀도에서는 온도가 높아지면 용해도가 증가하였다. 이것은 염료의 승화압이 온도 상승에 따라 증가하기 때문으로 판단된다. 염료의 용해도를 임의의 조건에서 구하기 위하여 증강인자를 사용하였다. 증강인자의 대수값과 밀도는 거의 직선적인 관계로 표시되었다.
The solubilities of disperse dyes in carbon dioxide were measured under the supercritical conditions of presure range between 15 and 29 MPa and 333.2K, 363.2K, 393.2K, and 423.2K using a supercritical extraction apparatus. The mole fractions of dyestuffs in carbon dioxide were 10-6-10-9. The solubility effect on temperature and pressure was discussed. The solubilities increased with rising temperature at constant density, because the sublimation pressure of dyestuff increased with temperature. The enhancement factors assuming the sublimation pressures of dyes were fixed to be 1 Pa were correlated linearly with the density of carbon dioxide.
References
Saus W, Knittel D, Schollmeyer E, Text. Res. J., 63(3), 135 (1993)
Gebert B, Saus W, Knittel D, Buschmann HJ, Schollmeyer E, Text. Res. J., 64(7), 371 (1994)
Dhalewadikar SV, McHugh MA, Guckes TL, J. Appl. Polym. Sci., 33, 521 (1987)
Krichnamurthy S, Chem SH, Makromol. Chem., 190, 1407 (1989)
Sand MI, U.S. Patent, 4,598,006 (1986)
Berens AR, Huvard GS, Korsmeyer RW, Presented at the 1988 Annual Meeting of AIChE, Washington D.C., Nov. (1988)
Iwai Y, Koga Y, Marugama H, Arai Y, J. Chem. Eng. Data, 38(4), 506 (1993)
Iwai Y, Koga Y, Hukuda T, Arai Y, J. Chem. Eng. Jpn., 25(6), 757 (1992)
Iwai Y, Koga Y, Hukuda T, Arai Y, J. Chem. Eng. Data, 36(4), 430 (1991)
Kramer A, Thodos G, J. Chem. Eng. Data, 34(2), 184 (1989)
Huang FH, Li MH, Lee LL, Starling KE, J. Chem. Eng. Jpn., 18(6), 490 (1985)
Gebert B, Saus W, Knittel D, Buschmann HJ, Schollmeyer E, Text. Res. J., 64(7), 371 (1994)
Dhalewadikar SV, McHugh MA, Guckes TL, J. Appl. Polym. Sci., 33, 521 (1987)
Krichnamurthy S, Chem SH, Makromol. Chem., 190, 1407 (1989)
Sand MI, U.S. Patent, 4,598,006 (1986)
Berens AR, Huvard GS, Korsmeyer RW, Presented at the 1988 Annual Meeting of AIChE, Washington D.C., Nov. (1988)
Iwai Y, Koga Y, Marugama H, Arai Y, J. Chem. Eng. Data, 38(4), 506 (1993)
Iwai Y, Koga Y, Hukuda T, Arai Y, J. Chem. Eng. Jpn., 25(6), 757 (1992)
Iwai Y, Koga Y, Hukuda T, Arai Y, J. Chem. Eng. Data, 36(4), 430 (1991)
Kramer A, Thodos G, J. Chem. Eng. Data, 34(2), 184 (1989)
Huang FH, Li MH, Lee LL, Starling KE, J. Chem. Eng. Jpn., 18(6), 490 (1985)