ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

기-액병류상향 충전탑에서 기-액흐름양상과 액체의 흐름 및 축방향혼합특성

Gas-Liquid Flow Pattern, Liquid Flow, and Axial Mixing Characteristics in a Packed Column with Gas-Liquid Cocurrent Upflow

HWAHAK KONGHAK, August 1996, 34(4), 511-518(8), NONE
downloadDownload PDF

Abstract

기-액흐름이 병류상향으로 흐르는 충전탑에서 기-액흐름양상과 액체의 흐름 및 축방향혼합특성을 연구하였다. 실험은 공기-물계에서 기-액흐름양상의 전이조건과 액체의 체류시간분포(RTD)를 측정하였다. 측정된 RTD로부터 제시된 3가지혼합모델, 즉 축방향분산모델(ADM), 정체지역이 존재하는 플러그흐름모델(PFM)과 정체지역이 존재하는 축방향분산모델(DSM)을 사용하여 혼합모델의 매개변수들을 산출하였다. 그리고 조업조건에 따른 각 혼합모델의 적용성과 매개변수들을 해석하였다. 실험결과, 기포흐름에서 맥동흐름으로 전이되는 기체속도는 액체속도가 증가할수록, 그리고 충전물인 유리구슬의 직경이 작을수록 증가하였으며 액체의 흐름과 혼합특성은 모델DSM으로 잘 해석할 수 있었다. 또한 곡선맞춤법으로 산출된 정체지역의 분율은 액체속도가 증가할수록 감소하였으나 유동지역과 정체지역간의 물질전달계수는 기체 및 액체속도의 증가에 따라 증가하였다. 그리고 모델 ADM과 모델DSM으로 산출된 유동지역에서의 Peclet수는 액체속도가 증가할수록, 그리고 충전물의 직경이 작을수록 증가하였다. 이때 조업조건에 따른 이들 매개변수에 대한 상관식을 얻었다.
For upward cocurrent gas-liquid flow in a packed column, the gas-liquid flow pat- tern, liquid flow, and axial mixing characteristics were investigated. The transition boundary of gas-liquid flow pattern and residence time distribution(RTD) of liquid phase were measured in an air-water system. Based on experimental RTDs, parameters of mixing models were evaluated with three proposed mixing models : axial dispersion model(ADM), plug flow model with stagnant zone(PFM), and axial dispersion model with stagnant zone(DSM). Accordingly, the applicability and parameters of each mixing model were analyzed for various operating conditions. We found that the gas velocity at bubble-pulse flow transition boundary was increased with increasing liquid velocity and decreasing diameter of glass bead as a packing material, and that the flow and mixing characteristics of liquid phase could be well analyzed by DSM. Also, the fraction of stagnant zone estimated by the curve fitting method was decreased with increasing liquid velocity, while the mass transfer coefficient between dynamic and stagnant zones was increased with increasing gas and liquid velocities. In dynamic zone, the calculated Peclet numbers in both ADM and DSM were increased with increasing liquid velocity and decreasing diameter of glass bead. In these conditions, correlations of these parameters were obtained for various operating conditions.

References

Furzer IA, Ho GE, AIChE J., 13, 614 (1967) 
Mata AR, Smith JM, Chem. Eng. J., 22, 229 (1981) 
VanGelder KB, Borman PC, Weenink RE, Westerterp KR, Chem. Eng. Sci., 45, 3171 (1990) 
Sylvester ND, Pitayagulsarn P, Ind. Eng. Chem. Process Des. Dev., 14, 421 (1975) 
Shah YT, "Gas-Liquid-Solid Reactor Design," McGraw-Hill, New York (1979)
Montagna AA, Shah YT, Ind. Eng. Chem. Process Des. Dev., 14, 479 (1975) 
Shah YT, Stiegel GJ, Sharma MM, AIChE J., 24, 369 (1978) 
Fukushima S, Kusaka K, J. Chem. Eng. Jpn., 10, 461 (1977)
Turpin JL, Huntington RL, AIChE J., 13, 1196 (1967) 
Kushalkal KB, Chem. Eng. Sci., 45, 759 (1990) 
Goenaga A, Smith JM, McCoy BJ, AIChE J., 35, 159 (1989) 
Kobayashi S, Kushiyama S, Ida Y, Wakao N, Kag. Kog. Ronbunshu, 5, 256 (1979)
Abbi YP, Gunn DJ, Trans. Instn. Chem. Eng., 54, 225 (1976)
Michell RW, Furzer IA, Chem. Eng. J., 4, 53 (1972) 
Bennett A, Goodridge F, Trans. Instn. Chem. Engrs., 48, 232 (1970)
Sicardi S, Hofmann H, Chem. Eng. J., 20, 251 (1980) 
Crine M, L'Homme G, "Encyclopedia of Fluid Mechanics: Vol. 6-Complex Flow Phenomena and Modeling," Chap. 9, Edited by Cheremisinoff, N.P., Gulf Pub. Co., Houston (1987)
Yang XL, Euzen JP, Wild G, Chem. Eng. Sci., 45, 3317 (1990)
Cho JH, Sung KC, Kim TO, HWAHAK KONGHAK, 31(6), 628 (1993)
Skomorokov VB, Kirillov VA, Chem. Eng. J., 33, 169 (1986) 
Rangaiah GP, Krishnaswamy PR, J. Chem. Eng. Jpn., 23, 124 (1990) 
Froment GF, Bischoff KB, "Chemical Reactor Analysis and Design," John Wiley & Sons, New York (1979)
Sato Y, Hirose T, Ida T, Kag. Kog., 38, 534 (1974)
Fernandes RC, Semiat R, Dukler AE, AIChE J., 29, 981 (1983) 
Specchia V, Sicardi S, Gianetto A, AIChE J., 20, 646 (1974) 
Taitel Y, Bornea D, Dukler AE, AIChE J., 26, 345 (1980) 
Dean JA, "Lange's Handbook of Chemistry," 12th Ed., McGraw-Hill, New York (1979)
Kubo K, Aratani T, Mishima A, Int. Chem. Eng., 23, 85 (1983)
Kan KM, Greenfield PF, Ind. Eng. Chem. Process Des. Dev., 18, 740 (1979) 
VanSwaaij WPM, Charpentier JC, Villermaux J, Chem. Eng. Sci., 24, 1083 (1969) 
Sicardi S, Baldi G, Specchia V, Chem. Eng. Sci., 35, 1775 (1980) 
Achwal SK, Stepanek JB, Can. J. Chem. Eng., 57, 409 (1979)
Stiegel GJ, Shah YT, Can. J. Chem. Eng., 55, 3 (1977)
Hochman JM, Effron E, Ind. Eng. Chem. Fundam., 8, 63 (1969) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로