Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Metalloporphyrin계 화합물을 포함한 Polysulfone 막에서의 산소의 촉진수송
Facilitated Transport of Oxygen for Polysulfone Membranes Containing metalloporphyrin Com- plexes
HWAHAK KONGHAK, October 1996, 34(5), 564-569(6), NONE
Download PDF
Abstract
Polysulfone 막과 운반체로 iron(II) porphyrin과 cobalt(II) polysulfone막을 통한 산소와 질소의 투과특성을 측정하여, 운반체가 산소와 질소의 투과특성에 미치는 영향을 조사하였다. 산소 운반체로는 중심이온이 iron이고 리간드가 각각 fluoride와 butyl인 [F20-TPP]Fe-F와 [F20-TPP]Fe-Bu, 그리고 중심이온이 cobalt인 [F20-TPP]Co(II)을 합성하여 사용하였다. 실험은 30-500 mmHg의 압력과 25℃의 온도에서 수행하였다. 실험결과 산소의 투과도 계수와, 산소와 질소의 이상분리인자가 운반체를 함유하는 막에서 운반체를 함유하지 않는 막에 비해 높은 값을 나타내었다. 운반체를 함유하는 막 중에서 산소의 투과도 계수는 운반체로 [F20-TPP]Fe-Bu을 사용한 막이 가장 높은 값을 가졌으며, 이상분리인자는 운반체로 [F20-TPP]Fe-F을 사용한 막이 가장 높은 값을 나타내었다. 운반체에 따른 이러한 산소의 투과도 계수 증가는 산소와 운반체간의 친화력에 의한 촉지수송의 결과라고 볼 수 있다. 질소의 투과도 계수 또한 운반체를 함유한 막에서 보다 높게 나타났는데, 이는 운반체의 첨가로 인해 막의 자유부피가 증가하였기 때문으로 생각할 수 있다. 산소의 용해도 계수와 용해선택도는 산소와의 친화력이 가장 좋은 [F20-TPP]Fe-F을 운반체로 첨가한 막이 가장 높은 값을 가졌다.
The permeation characteristics of pure oxygen and nitrogen were examined through pure polysulfone(PSf) membrane and polysulfone(PSf) membranes containing the acidic electron-poor iron(II) porphyrin and cobalt(II) porphyrin complexes. 5,10,15,20-tetraikis(pentafluorophenyl)-21H,23H-porphine iron(II) po- rphyrin and butyl ligands, [F20-TPP]Fe-F and [F20-TPP]Fe-Bu, and 5,10,15,20 -tetrakis(pentafluorophenyl)-21H,23H-porphine cobalt(II) complex, [F20-TPP]Co (II) were used as the synthetic oxygen carrieres. All permeation experiments were carried out at the range of pressure meabilities of PSf membranes con- taining carrier complexes were higher than those of the pure PSf membrane. The ideal separation factors of the PSf membrane containing [F20-TPP]Fe-F were higher than those of the other membranes and the permeability coefficients of oxygen were the highest of the PSf membrane containing [F20-TPP]Fe-Bu. The increase of oxygen permeability is due to the facilitated oxygen transport by fluoroiron porphyrins. And the nitrogen permeabilities of PSf membranes containing carrier complexes were also higher than those of the pure PSf membrane. The increase of nitrogen permeability is thought to be led by increasing the free volume of the membrane by the carrier sub- stances. The solubility of oxygen and solubility selectivity were the highest of the membrane containing [F20-TPP]Fe(II) with fluoride ligand of which the affinity with oxygen was the highest.
References
Im SW, Yu BS, Hong SI, Korean J. Chem. Eng., 10(4), 207 (1993)
Smith KM, "Porphyrin and Metalloporphyrins," Elsevier Scientific Publishing Co., New York (1975)
Tsuchida E, J. Macromol. Sci.-Chem., A13(4), 545 (1979)
Masuda T, Isobe E, Higashimura T, Takada K, J. Am. Chem. Soc., 105, 7473 (1983)
Nishide H, Oyanagi M, Okadda O, Tsuchida E, Macromolecules, 19, 4494 (1986)
Nishide H, Oyanagi M, Okada O, Tsuchida F, Macromolecules, 20, 417 (1987)
Nishide H, Oyanagi M, Okada O, Tsuchida E, Polym. J., 199(7), 839 (1987)
Nichide H, Oyanagi M, Okada O, Tsuchida E, Macromolecules, 20, 2312 (1987)
Nishide H, Oyanagi M, Okada O, Tsuchida E, J. Phys. Chem., 92, 6461 (1988)
Tsuchida F, Nishide H, Topics in Current Chemistry, 132, 64 (1986)
Euton SS, Eaton GR, J. Am. Chem. Soc., 97, 3660 (1975)
Woon TC, Shirazi A, Bruice TC, Inorg. Chem., 25, 3845 (1986)
Vieth WR, Sladek KJ, J. Colloid Sci., 20, 1014 (1965)
Paul DR, Koros WJ, J. Polym. Sci. B: Polym. Phys., 14, 675 (1976)
Fredrickson GH, Helfand E, Macromolecules, 18, 2201 (1985)
Yu BS, Goff HM, J. Am. Chem. Soc., 111, 6558 (1989)
Noble RD, J. Membr. Sci., 60, 297 (1991)
Smith KM, "Porphyrin and Metalloporphyrins," Elsevier Scientific Publishing Co., New York (1975)
Tsuchida E, J. Macromol. Sci.-Chem., A13(4), 545 (1979)
Masuda T, Isobe E, Higashimura T, Takada K, J. Am. Chem. Soc., 105, 7473 (1983)
Nishide H, Oyanagi M, Okadda O, Tsuchida E, Macromolecules, 19, 4494 (1986)
Nishide H, Oyanagi M, Okada O, Tsuchida F, Macromolecules, 20, 417 (1987)
Nishide H, Oyanagi M, Okada O, Tsuchida E, Polym. J., 199(7), 839 (1987)
Nichide H, Oyanagi M, Okada O, Tsuchida E, Macromolecules, 20, 2312 (1987)
Nishide H, Oyanagi M, Okada O, Tsuchida E, J. Phys. Chem., 92, 6461 (1988)
Tsuchida F, Nishide H, Topics in Current Chemistry, 132, 64 (1986)
Euton SS, Eaton GR, J. Am. Chem. Soc., 97, 3660 (1975)
Woon TC, Shirazi A, Bruice TC, Inorg. Chem., 25, 3845 (1986)
Vieth WR, Sladek KJ, J. Colloid Sci., 20, 1014 (1965)
Paul DR, Koros WJ, J. Polym. Sci. B: Polym. Phys., 14, 675 (1976)
Fredrickson GH, Helfand E, Macromolecules, 18, 2201 (1985)
Yu BS, Goff HM, J. Am. Chem. Soc., 111, 6558 (1989)
Noble RD, J. Membr. Sci., 60, 297 (1991)