Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
헬륨기상에서 디알킬과산화물류의 열분해 반응에 대한 열역학적 특성값의 추산
Estimation of Thermodynamic Properties on the Pyrolysis of Dialkyl Peroxides in the Helium Gas
HWAHAK KONGHAK, October 1996, 34(5), 592-596(5), NONE
Download PDF
Abstract
3종류의 디알킬과산화물에 대한 열분해 반응속도를 온도 353.15-453.15K, 1013.3hPa의 조건에서 단열봄메열량계를 사용하여 저압 열분해법(very-low-pressure pyrolysis technique : VLPP)에 의해 기체헬륨 분위기하에서 측정하였다. 453.15K에서의 속도상수는 과산화디메틸은 7.482 X 10-3 s-1, 과산화디에틸은 7.980 X 10-3s-1 그리고 과산화디제3부틸은 3.155 X 10-3s-1이었다. 아울러 온도 353.15K이상에서 디알킬과산화물류의 열분해 반응은 외관상 1차로 진행하였으며 Arrhenius plot를하여 다음과 같이 활성화에너지를 구하였다.
kd,obsd=3.079 X 1015 exp (-152.832kJ/8.314T) (과산화디메틸)
kd,obsd=7.938 X 1015 exp (-156.109kJ/8.314T) (과산화디에틸)
kd,obsd=7.568 X 1015 exp (-159.419kJ/8.314T) (과산화디제3부틸)
또한 453.15K에서의 활성화 자유에너지는 과산화디메틸은 191.991kJmol-1, 과산화디에틸은 198.836kJmol-1 그리고 과산화디제3부틸은 201.965kJmol-1이었다. 이것들로부터 디알킬과산화물류의 산소-산소 결합의 열분해 활성화 에너지와 활성화 자유에너지는 과산화디메틸<과산화디에틸<과산화디제3부틸의 순서로 증가함을 알았다. 이러한 연구결과들은 디알킬과산화물류의 효율적인 산업응용이나 합리적인 안전관리에 이용될 수 있다.
kd,obsd=3.079 X 1015 exp (-152.832kJ/8.314T) (과산화디메틸)
kd,obsd=7.938 X 1015 exp (-156.109kJ/8.314T) (과산화디에틸)
kd,obsd=7.568 X 1015 exp (-159.419kJ/8.314T) (과산화디제3부틸)
또한 453.15K에서의 활성화 자유에너지는 과산화디메틸은 191.991kJmol-1, 과산화디에틸은 198.836kJmol-1 그리고 과산화디제3부틸은 201.965kJmol-1이었다. 이것들로부터 디알킬과산화물류의 산소-산소 결합의 열분해 활성화 에너지와 활성화 자유에너지는 과산화디메틸<과산화디에틸<과산화디제3부틸의 순서로 증가함을 알았다. 이러한 연구결과들은 디알킬과산화물류의 효율적인 산업응용이나 합리적인 안전관리에 이용될 수 있다.
The kinetics of the pyrolysis reaction over three kinds of dialkylperoxides were investigated at temperatures 353.15-453.15 K and at pressure 1013.3hPa in the modified adiabatic bomb calorimeter. The pyrolysis reaction has been carried out using the very-low-pressure pyrolysis technique(VLPP) in the presence of helium gas. The pyrolysis reaction rate constants were determined to be 7.482 X 10-3s-1 for di-methyl peroxide(DMP), 7,980 X 10-3s-1 for di- ethyl peroxide(DEP) and 3.155 X 10-3s-1 for di-tert-butyl peroxide(DTBP) at 453.15K. In addition, the pyrolysis reaction rate of dialkylperoxides were found to be apparently 1st order over 353.15K and its activation energies was deter- mined by Arrhenius plot. From this results, the Arrhenius equations are as follows:
kd,obsd=3.079 X 1015 exp (-152.832kJ/8.314T) (DMP)
kd,obsd=7.938 X 1015 exp (-156.109kJ/8.314T) (DEP)
kd,obsd=7.568 X 1015 exp (-159.419kJ/8.314T) (DTBP)
It has been also shown that the free energies of activation were 191.991kJmol-1 for DMP, 198.836kJmol-1 for DEP and 201.965kJmol-1 for DTBP at 453.15K. Therefore, the activation energies and free energies of activation for the O-O bond dissociation of dialkylperoxides were found to be increased in the order of DMP<DEP<DTBP from the reaction system. This results can be used to develop an industrial application process aiming for high productivity and rational safety guard.
kd,obsd=3.079 X 1015 exp (-152.832kJ/8.314T) (DMP)
kd,obsd=7.938 X 1015 exp (-156.109kJ/8.314T) (DEP)
kd,obsd=7.568 X 1015 exp (-159.419kJ/8.314T) (DTBP)
It has been also shown that the free energies of activation were 191.991kJmol-1 for DMP, 198.836kJmol-1 for DEP and 201.965kJmol-1 for DTBP at 453.15K. Therefore, the activation energies and free energies of activation for the O-O bond dissociation of dialkylperoxides were found to be increased in the order of DMP<DEP<DTBP from the reaction system. This results can be used to develop an industrial application process aiming for high productivity and rational safety guard.
Keywords
References
대한민국 소방법시행령(대통령령 제 14334호. 1994년 7월 20일) (1994)
Stevens MP, "Polymer Chemistry," 2nd ed., Oxford University Press, New York, 192 (1990)
Dvorchak MJ, Riberi BH, J. Coat. Technol., 64, 43 (1992)
Park BG, Chung JS, Park DC, Park DW, HWAHAK KONGHAK, 29(6), 687 (1991)
Allcock HR, Lampe FW, "Contemporary Polymer Chemistry," Prentice-Hall, New Jersey, 52 (1990)
Chateauneuf J, Lusztyk J, Ingold KU, J. Am. Chem. Soc., 110, 2877 (1988)
Pryor WA, Hendrickson WH, Tetrahedron Lett., 24, 1459 (1983)
Howard JA, Chenier JHB, Can. J. Chem., 58, 2808 (1980)
Kroschwitz JI, Kremer TA, Klingsberg A, Piccininni RM, Salvatore A, Baldwin T, "Encyclopedia of Polymer Science and Engineering," 2nd ed., Ed. by Mark. H.F., Bikales, N.M., Oveberger, C.G., Manges, G. and Kroschwitz., J.I., Wiley Interscience Pub., New York, 11, 1 (1989)
Hanst PL, Calvert JG, J. Phys. Chem., 63, 104 (1959)
Masson JC, "Polymer Handbook," 3rd ed., Ed. by Brandup, J. and Immergut, E.H., Wiley-Interscience Pub., New York, II/1 (1989)
Takezaki Y, Takeuchi C, J. Chem. Phys., 22, 1527 (1954)
Pryor WA, Huston DM, Fiske TR, Pickering TL, Ciuffarin E, J. Am. Chem. Soc., 86, 4237 (1964)
Harris EJ, Egerton AC, Proc. Roy. Soc., A168, 1 (1938)
Lin KH, VanNess HC, Abbott MM, "Chemical Engineers' Handbook," 5th ed., Ed. by Perry, R.H. and Chilton, C.H., McGraw-Hill Kogakusha, Tokyo, 4-37 (1973)
Rebbert RE, Laidler KJ, J. Chem. Phys., 20, 574 (1952)
Huyser ES, VanScoy RM, J. Org. Chem., 33, 3524 (1968)
Offenbach JA, Tobolsky AV, J. Am. Chem. Soc., 79, 278 (1957)
Lossing FP, Tickner AW, J. Chem. Phys., 20, 907 (1952)
Raley JH, Rust FF, Vaughan WE, J. Am. Chem. Soc., 70, 88 (1948)
Parr Instrument Company Bulletin 1200/10-84
Hiatt R, McCarrick T, J. Am. Chem. Soc., 97, 5234 (1975)
Benson SW, Spokes GN, J. Phys. Chem., 72, 1982 (1968)
Wolf CJ, Grayson MA, Fanter DL, Anal. Chem., 52, 348A (1980)
Crumpler JB, Yoe JH, "Chemical Computations and Errors," John Wiley and Sons, Inc., New York, 127 (1965)
Chang R, "Physical Chemistry with Applications to Biological Systems," Macmillan Pub. Inc., New York, 388 (1977)
Stevens MP, "Polymer Chemistry," 2nd ed., Oxford University Press, New York, 192 (1990)
Dvorchak MJ, Riberi BH, J. Coat. Technol., 64, 43 (1992)
Park BG, Chung JS, Park DC, Park DW, HWAHAK KONGHAK, 29(6), 687 (1991)
Allcock HR, Lampe FW, "Contemporary Polymer Chemistry," Prentice-Hall, New Jersey, 52 (1990)
Chateauneuf J, Lusztyk J, Ingold KU, J. Am. Chem. Soc., 110, 2877 (1988)
Pryor WA, Hendrickson WH, Tetrahedron Lett., 24, 1459 (1983)
Howard JA, Chenier JHB, Can. J. Chem., 58, 2808 (1980)
Kroschwitz JI, Kremer TA, Klingsberg A, Piccininni RM, Salvatore A, Baldwin T, "Encyclopedia of Polymer Science and Engineering," 2nd ed., Ed. by Mark. H.F., Bikales, N.M., Oveberger, C.G., Manges, G. and Kroschwitz., J.I., Wiley Interscience Pub., New York, 11, 1 (1989)
Hanst PL, Calvert JG, J. Phys. Chem., 63, 104 (1959)
Masson JC, "Polymer Handbook," 3rd ed., Ed. by Brandup, J. and Immergut, E.H., Wiley-Interscience Pub., New York, II/1 (1989)
Takezaki Y, Takeuchi C, J. Chem. Phys., 22, 1527 (1954)
Pryor WA, Huston DM, Fiske TR, Pickering TL, Ciuffarin E, J. Am. Chem. Soc., 86, 4237 (1964)
Harris EJ, Egerton AC, Proc. Roy. Soc., A168, 1 (1938)
Lin KH, VanNess HC, Abbott MM, "Chemical Engineers' Handbook," 5th ed., Ed. by Perry, R.H. and Chilton, C.H., McGraw-Hill Kogakusha, Tokyo, 4-37 (1973)
Rebbert RE, Laidler KJ, J. Chem. Phys., 20, 574 (1952)
Huyser ES, VanScoy RM, J. Org. Chem., 33, 3524 (1968)
Offenbach JA, Tobolsky AV, J. Am. Chem. Soc., 79, 278 (1957)
Lossing FP, Tickner AW, J. Chem. Phys., 20, 907 (1952)
Raley JH, Rust FF, Vaughan WE, J. Am. Chem. Soc., 70, 88 (1948)
Parr Instrument Company Bulletin 1200/10-84
Hiatt R, McCarrick T, J. Am. Chem. Soc., 97, 5234 (1975)
Benson SW, Spokes GN, J. Phys. Chem., 72, 1982 (1968)
Wolf CJ, Grayson MA, Fanter DL, Anal. Chem., 52, 348A (1980)
Crumpler JB, Yoe JH, "Chemical Computations and Errors," John Wiley and Sons, Inc., New York, 127 (1965)
Chang R, "Physical Chemistry with Applications to Biological Systems," Macmillan Pub. Inc., New York, 388 (1977)