ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

현탁중합에서 교반에 대한 PVC 수지의 입자특성

Particle Characteristics of PVC Resin on Agitation during VCM Suspension Polymerization

HWAHAK KONGHAK, December 1996, 34(6), 721-726(6), NONE
downloadDownload PDF

Abstract

Brumagine type의 교반장치가 부착된 0.28 ㎥ autoclave에서 단위체적당 소요동력(P/V)에 대한 교반기의 회전속도, 교반기 직경, 교반기 선단의 각도 및 선단의 후퇴부각도의 영향을 조사하였다. 단위체적당 소요동력은 교반기의 회전속도, 교반기직경과 교반기 선단의 각도 및 선단의 후퇴부각도가 증가함에 따라 증가하였다. PVC 수지의 평균입경은 단위체적당 소용동력이 증가함에 따라 감소하였고 PVC 수지의 편차계수는 단위체적당 소요동력이 0.9에서 1.0kW/㎥ 사이에서 최소값을 나타내었다. 단위체적당 소요동력의 실험 data를 조업변수와 관련지었다. 또한 등방성 난류이론을 근거로하여 PVC수지의 평균입경에 대한 Reynolds 수의 무차원상관식을 제시하였다.
The effects of rotational speed, impeller diameter, the angle of impeller tip and the pitched angle of impeller tip on the energy dissipation rate per unit volume(P/V) were investigated in the autoclave of 0.28㎥ with stirring unit. The energy dissipation rate per unit volume increased with increasing rotational speed, impeller diameter, the angle of impeller tip and the pitched angle of impeller tip. The mean particle diameter of PVC resin decreased with increasing the energy dissipation rate per unit volume, and the coefficient variance(CV) of PVC resin exhibited a minimum value at the energy dissipation rate per unit volume between 0.9 and 1.0kW/㎥. The energy dissipation rate per unit volume was correlated to the operating variables on the stirred tank. The dimensionless correlation equation of Reynolds number for the mean particle diameter of PVC was also presented based on the isotropic turbulent theory.

References

Hinze JO, AIChE J., 1, 289 (1955) 
Vermeulen T, Williams GM, Langlois GE, AAPG Bull., 51, 85F (1955)
Sprow FB, Chem. Eng. Sci., 22, 435 (1967) 
Hills BA, Br. Chem. Eng., 6 (1961)
Lee DH, Kim JO, Kim SD, Chem. Eng. Commun., 119, 159 (1993)
Lee DH, Kim JO, Han JH, Kim SD, HWAHAK KONGHAK, 31(1), 118 (1993)
Lee DH, Kim SD, Chem. Eng. Technol., 16, 263 (1993) 
Kim SD, Lee DH, Kim DY, Hahn PW, HWAHAK KONGHAK, 31(3), 311 (1993)
Hedden H, Chem. Ing. Tech., 42, 457 (1970) 
Johnson GR, J. Vinyl Technol., 2, 138 (1980) 
Lewis MH, Johnson GR, J. Vinyl Technol., 3, 102 (1981) 
Calderbank PH, Moo-Young MB, Chem. Eng. Sci., 16, 39 (1961) 
Kolmogorov AN, C. R. Acad. Sci. USSR, 30, 310 (1941)
Batchelor GK, Proc. Comb. Phil. Soc., 47, 359 (1951)
Calderbank PH, Int. Symp. on Distillation European Federation of Chemical Enging, England (1960)
Kirshbaum R, Van Dierendonck LL, 2nd World Congr. Chem. Eng., 3, 385 (1981)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로