Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
순환유동층에서 입자의 크기변화에 따른 츰밀도의 변화특성
The Effect of Particle Size on the Suspension Density in a Circulating Fluidized Bed
HWAHAK KONGHAK, December 1996, 34(6), 735-741(7), NONE
Download PDF
Abstract
순환유동층의 조업에 중요한 영향을 미치는 고체입자의 농도분포에 대한 고체입자 크기의 영향을 살펴보았다. 본 연구에 사용된 순환유동층은 직경 50 mm, 높이 2500mm였다. 사용된 입자는 크기가 다른 모래였으며 각각의 평균 직경은 147, 280㎛이었다. 기체의 유속범위는 3-5.5 m/s, 입자순환량은 10-100kg/㎡.s이었으며 이때 압력강하로부터 측정된 suspension density는 10-80kg/㎥, 입자의 크기변화 및 기체유 속의 변화에 따른 고체입자의 국부적 그리고 평균 농도분포의 변화를 관찰할 수 있었으며, 순환유동층의 조업변수들로부터 평균 입자농도를 예측할 수 있는 상관관계식을 제시하였다.
An experimental investigation was carried out to determine the effect of particle size and gas velocity on the suspension density in a circulating fluidized bed. The experimental test section has the dimension of 50 mm ID X 2500mm height and two different sizes of sand(147,280㎛) were employed as the bed material. The operating conditions of gas velocity and solid circulation rate were in the ranges of 3.0-5.5 m/s and 10-100kg/㎡·s, repectively and the corresponding on the suspension density with different size of sand particle was observed. A correlation was proposed to predict the crosssectional averaged suspension density with the operating variables.
References
Square AM, Proc. 1st Int. Conf. on CFB, Halifax, Canada, 1 (1986)
Reh L, Chem. Ing. Prog., 67, 58 (1970)
Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann (1991)
Yerusalmi J, Tuner DH, Squires AM, Ind. Eng. Chem. Process Des. Dev., 15, 47 (1976)
Hartge EU, Li Y, Werther J, Proc. 1st Int. Conf. on CFB, Halifax, Canada, 153 (1986)
Cho YJ, Namkung W, Kim SD, Park SW, J. Chem. Eng. Jpn., 27(2), 158 (1994)
Rhode MJ, Geldart D, Powder Technol., 53, 155 (1987)
Kato K, Shibasaki H, J. Chem. Eng., 22, 205 (1989)
Arena U, Cammaroto A, Pistone L, Proc. 1st Int'l Conf. on CFB, Halifax, Canada, 119 (1986)
Bai DR, Jin Y, Yu ZQ, Zhu JX, Powder Technol., 71, 51 (1992)
Glicksman LR, Chem. Eng. Sci., 39, 1373 (1984)
Basu P, Nag PK, Int. J. Heat Mass Transf., 30, 2397 (1987)
Chen CC, Chen CL, Chem. Eng. Sci., 47, 1017 (1992)
Hirama T, Takeuchi H, Chib T, Powder Technol., 70, 207 (1992)
Reh L, Chem. Ing. Prog., 67, 58 (1970)
Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann (1991)
Yerusalmi J, Tuner DH, Squires AM, Ind. Eng. Chem. Process Des. Dev., 15, 47 (1976)
Hartge EU, Li Y, Werther J, Proc. 1st Int. Conf. on CFB, Halifax, Canada, 153 (1986)
Cho YJ, Namkung W, Kim SD, Park SW, J. Chem. Eng. Jpn., 27(2), 158 (1994)
Rhode MJ, Geldart D, Powder Technol., 53, 155 (1987)
Kato K, Shibasaki H, J. Chem. Eng., 22, 205 (1989)
Arena U, Cammaroto A, Pistone L, Proc. 1st Int'l Conf. on CFB, Halifax, Canada, 119 (1986)
Bai DR, Jin Y, Yu ZQ, Zhu JX, Powder Technol., 71, 51 (1992)
Glicksman LR, Chem. Eng. Sci., 39, 1373 (1984)
Basu P, Nag PK, Int. J. Heat Mass Transf., 30, 2397 (1987)
Chen CC, Chen CL, Chem. Eng. Sci., 47, 1017 (1992)
Hirama T, Takeuchi H, Chib T, Powder Technol., 70, 207 (1992)