Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
유동층 반응기에서의 석탄가스화 반응 특성 - O2-촤, H2O-촤의 반응성과 석탄 열분해 및 가스화 반응 특성 -
Coal Gasification Characteristics in a Fluidized Bed Reactor
HWAHAK KONGHAK, February 1997, 35(1), 121-128(8), NONE
Download PDF
Abstract
석탄의 가스화 반응 전반을 고찰하기 위하여 열천칭반응기에서 O2-촤, H2O-촤의 반응성을 조사하였으며, 유동층 반응기(0.1m I.D.×1.6m high)에서 석탄의 열분해 및 가스화 반응을 수행하였다. 열천칭 반응기에서의 O2-촤, H2O-촤의 반응은 비교적 shrinking core 모델로써 잘 예측되어, 다음의 반응속도 표현식으로 나타낼 수 있었다.
dX/dt = kPnO2 or H2Oexp(-E/RT)(1-X)2/3
또한 O2-촤, H2O-촤의 반응에 대한 활성화 에너지는 화학반응 율속단계에서 각각 27 및 40kcal/mol의 값을 얻었다. 유동층 반응기에서의 석탄 열분해의 경우에는 반응온도 및 유동화 속도가 증가함에 따라 열분해 생성가스인 H2, CO, CO2, CH4의 농도가 모두 증가하는 경향을 나타내었으며, 열분해 생성가스는 가스화의 생성가스 조성에 상당한 영향을 미치는 것으로 나타났다. 유동층 반응기에서의 석탄가스화는 크게 H2(30-40%), CO(23-28%), CO2(27-35%) 및 CH4(6-9%)의 생성가스 조성을 이루고 있었으며, 발열량은 약 2000-3750kJ/M3의 발열량을 갖고 있었으며, 온도 및 수증기/석탄비가 증가할수록, 반면에 공기/석탄비가 감소할수록 그 생성가스의 질은 높아지는 것으로 나타났다.
dX/dt = kPnO2 or H2Oexp(-E/RT)(1-X)2/3
또한 O2-촤, H2O-촤의 반응에 대한 활성화 에너지는 화학반응 율속단계에서 각각 27 및 40kcal/mol의 값을 얻었다. 유동층 반응기에서의 석탄 열분해의 경우에는 반응온도 및 유동화 속도가 증가함에 따라 열분해 생성가스인 H2, CO, CO2, CH4의 농도가 모두 증가하는 경향을 나타내었으며, 열분해 생성가스는 가스화의 생성가스 조성에 상당한 영향을 미치는 것으로 나타났다. 유동층 반응기에서의 석탄가스화는 크게 H2(30-40%), CO(23-28%), CO2(27-35%) 및 CH4(6-9%)의 생성가스 조성을 이루고 있었으며, 발열량은 약 2000-3750kJ/M3의 발열량을 갖고 있었으며, 온도 및 수증기/석탄비가 증가할수록, 반면에 공기/석탄비가 감소할수록 그 생성가스의 질은 높아지는 것으로 나타났다.
Gasification of coal was carried out in a fluidized bed reactor(0.1m-I.D.×1.6m-high) over a temperature range of 1023 to 1173 K at atmospheric pressure. To understand the overall gasification reaction, the kinetic studies of the steam-char and oxygen-char reaction were performed in a thermobalance reactor, and the pyrolysis of coal in a fluidized bed reactor also was carried out. In the kinetic studies of coal char, the reaction rate equations could be expressed as
dX/dt = kPnO2 or H2Oexp(-E/RT)(1-X)2/3
The activation energies of steam-char and oxygen-char reactions were found to be 27 and 40 kcal/mol respectively in a chemical reaction control region. For the pyrolysis reaction in a fluidized bed reactor, all gas components yields increased with increasing the reaction temperature and fluidizing gas velocity. The product gases of the gasification reaction in a fluidized bed reactor were composed of H2(30-40%), CO(23-28%), CO2(27-35%) and CH4(6-9%), and the heating value of the product gas was about 2000-3750kJ/m3 at employed experimental conditions. As reaction temperature and steam/coal ratio increased, while as the air/coal ratio decreased, the heating value of the product gas increased.
dX/dt = kPnO2 or H2Oexp(-E/RT)(1-X)2/3
The activation energies of steam-char and oxygen-char reactions were found to be 27 and 40 kcal/mol respectively in a chemical reaction control region. For the pyrolysis reaction in a fluidized bed reactor, all gas components yields increased with increasing the reaction temperature and fluidizing gas velocity. The product gases of the gasification reaction in a fluidized bed reactor were composed of H2(30-40%), CO(23-28%), CO2(27-35%) and CH4(6-9%), and the heating value of the product gas was about 2000-3750kJ/m3 at employed experimental conditions. As reaction temperature and steam/coal ratio increased, while as the air/coal ratio decreased, the heating value of the product gas increased.
Keywords
References
Caram HS, Amundson NR, Ind. Eng. Chem. Process Des. Dev., 18, 80 (1979)
Chatterjee PK, Datta AB, Kundu KM, Can. J. Chem. Eng., 73(2), 204 (1995)
Song BH, Kim SD, Fuel, 72, 797 (1993)
Yoo KS, Kim SD, Park SB, Ind. Eng. Chem. Res., 33(7), 1786 (1994)
Matsui I, Kunii D, Furusawa T, Ind. Eng. Chem. Res., 26, 95 (1987)
Matsui I, Kunii D, Furusawa T, J. Chem. Eng. Jpn., 18, 105 (1985)
Veraa MJ, Bell AT, Fuel, 57, 194 (1978)
Schmal M, Monteiro JLF, Castellan JL, Ind. Eng. Chem. Process Des. Dev., 21, 256 (1982)
Kwon TW, Kim SD, Fung DPC, Fuel, 67, 530 (1988)
Rajan RR, Wen CY, AIChE J., 26, 642 (1980)
Park KY, Bak YC, Son JE, Park WH, HWAHAK KONGHAK, 25(4), 345 (1987)
Dutta S, Wen CY, Ind. Eng. Chem. Process Des. Dev., 16, 31 (1977)
Walker PLJ, Pusinko FJ, Austin LG, Adv. Catal., 11, 133 (1959)
Chin G, Kimura S, Tone S, Otake T, Int. Chem. Eng., 23, 105 (1983)
Kasaoka S, Skata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
Lee WJ, Ph.D. Thesis, KAIST, Taejon, Korea (1995)
Foong SK, Lim CJ, Watkinson AP, Can. J. Chem. Eng., 58, 84 (1980)
Watkinson AP, Cheng G, Prakash CB, Can. J. Chem. Eng., 61, 461 (1983)
Saffer M, Ocampo A, Laguerie C, Int. Chem. Eng., 28, 46 (1988)
Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 30(1), 80 (1992)
Chatterjee PK, Datta AB, Kundu KM, Can. J. Chem. Eng., 73(2), 204 (1995)
Song BH, Kim SD, Fuel, 72, 797 (1993)
Yoo KS, Kim SD, Park SB, Ind. Eng. Chem. Res., 33(7), 1786 (1994)
Matsui I, Kunii D, Furusawa T, Ind. Eng. Chem. Res., 26, 95 (1987)
Matsui I, Kunii D, Furusawa T, J. Chem. Eng. Jpn., 18, 105 (1985)
Veraa MJ, Bell AT, Fuel, 57, 194 (1978)
Schmal M, Monteiro JLF, Castellan JL, Ind. Eng. Chem. Process Des. Dev., 21, 256 (1982)
Kwon TW, Kim SD, Fung DPC, Fuel, 67, 530 (1988)
Rajan RR, Wen CY, AIChE J., 26, 642 (1980)
Park KY, Bak YC, Son JE, Park WH, HWAHAK KONGHAK, 25(4), 345 (1987)
Dutta S, Wen CY, Ind. Eng. Chem. Process Des. Dev., 16, 31 (1977)
Walker PLJ, Pusinko FJ, Austin LG, Adv. Catal., 11, 133 (1959)
Chin G, Kimura S, Tone S, Otake T, Int. Chem. Eng., 23, 105 (1983)
Kasaoka S, Skata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
Lee WJ, Ph.D. Thesis, KAIST, Taejon, Korea (1995)
Foong SK, Lim CJ, Watkinson AP, Can. J. Chem. Eng., 58, 84 (1980)
Watkinson AP, Cheng G, Prakash CB, Can. J. Chem. Eng., 61, 461 (1983)
Saffer M, Ocampo A, Laguerie C, Int. Chem. Eng., 28, 46 (1988)
Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 30(1), 80 (1992)