Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
폐수처리용 전착 이산화납전극의 전해촉매활성 및 성능에 관한 연구
A Study on the Electrocatalystic Activities of Electrodeposited Lead Dioxide Electrodes for the Wast-water Treatment and Its Performances
HWAHAK KONGHAK, April 1997, 35(2), 218-224(7), NONE
Download PDF
Abstract
본 연구는 폐수처리를 위한 오존발생에 사용되는 높은 전해촉매활성과 내구성을 가지는 이산화납전극을 제작하는데 목적이 있다. 티타늄 지지체상에 sodium lauryl sulfate, sodium dodecylbenzenesulfate와 같은 음이온 계면활성제를 HClO4 지지전해질에 첨가하여 전착한 β-PbO2의 특성 및 전해촉매활성은 XRD, SEM, cyclic voltammograms, 매크로전해를 이용하여 검토하였다. XRD분석결과 음이온 계면활성제들은 전착층의 결정입자크기를 작게 하는 경향이 나타났다. 음이온 계면활성제의 존재하에 전착한 β-PbO2 전극은 1.0M H2SO4 지지전해질에서 dimethyl sulfoxide, benzaldehyde의 양극산화에 대한 전해촉매활성을 향상시켰다. 전해촉매현상은 음이온 계면활성제를 전해액에 첨가할 때 전착층에 생성된 표면활성의 결과로 결론되어지며, 표면활성은 양극산소전달반응에서 전달되는 수산기라디칼을 흡착할 수 있는 표면사이트를 증가시켰다. 티타늄마드래스에 전착시킨 이산화납전극을 이용하여 과염소산용액으로부터 오존발생에 대한 전극성능과 내구성을 검토하였다. HClO4 지지전해질에 sodium lauryl sulfate 와 NaF를 첨가하여 전착한 PbO2 전극이 가장 높은 전류효율과 내구성을 가짐을 확인하였다.
This research is aimed to manufacturing of lead dioxide electrode having high electrocatalytic activity and durability for the ozone evolution to treat waste water. The characteristics and electrocatalytic activities of β-PbO2 deposited electrochemically on titanium substrate by added anionic surfactants such as sodium lauryl sulfate, sodium dodecylbenzenesulfate in HClO4 supporting electrolyte were investigated by using XRD, SEM, cyclic voltammograms, and macro-electrolysis. Results of XRD analysis ascertained that β-PbO2 films electrodeposited in the presence of anionic surfactant have the same tetragonal structure as pure β-PbO2 films. The SEM results showed that these anionic surfactants tend to diminish crystal size of the deposited layer. The β-PbO2 electrodes electrodeposited in the presence of anionic surfactant improved significantly electrocatalytic activity for anodic oxidation of dimethyl sulfoxide, benzaldehyde in 1.0M H2SO4 supporting electrolyte. The observed electrocatalytic phenomenon is concluded to be the beneficial consequence of surface activity generated on deposited layer when anionic surfactant was added to electrolyte, and surface activity increased surface sites capable of adsorbing hydroxyl radical which are transferred in the anodic oxygen transfer reaction. Electrode performance and durability for the evolution of ozone in perchloric acid solution with using lead dioxide electrodes electrodeposited on titanium madras have been investigated. It was ascertained that the PbO2 electrode electrodeposited by adding sodium lauryl sulfate and NaF in HClO4 supporting electrolyte showed the highest current efficiency and durability.
References
Pavid BL, Brink DR, "Ozone in Water Treatment: Application and Engineering," Lewis Publishers, London (1991)
Tabata N, "High Power Density Ozonier," 3rd Int. Symp. on Ozone Technology, Paris (1977)
Trasatti S, "Electrodes of Conductive Metallic Oxides," Chap. 4, 11, Elsevier Sci, Pub., Amsterdam, Oxford, NY, 183, 628 (1981)
Chang H, Johnson DC, J. Electrochem. Soc., 136, 17 (1989)
Steckhan E, "Topics in Current Chemistry," Chap. 1, Springer-Verlag, New York, Toronto, 13 (1987)
Carr JP, Hampson WA, Chem. Rev., 72, 682 (1972)
Weinberg NL, Weinberg HR, Chem. Rev., 68, 449 (1968)
Gabe DR, "Principle of Metal Surface Treatment and Protection," 2nd ed., Pergamon Press, Ins., Elmsford, NY, 66 (1978)
Chang H, Johnson DC, J. Electrochem. Soc., 137, 2452 (1989)
Bard AJ, Faulkner LR, "Electrochemical Method," Chap. 1, John Wiley and Sons, New York, Toronto, 21 (1980)
Somorjai GA, Adv. Catal., 26, 1 (1977)
Tabata N, "High Power Density Ozonier," 3rd Int. Symp. on Ozone Technology, Paris (1977)
Trasatti S, "Electrodes of Conductive Metallic Oxides," Chap. 4, 11, Elsevier Sci, Pub., Amsterdam, Oxford, NY, 183, 628 (1981)
Chang H, Johnson DC, J. Electrochem. Soc., 136, 17 (1989)
Steckhan E, "Topics in Current Chemistry," Chap. 1, Springer-Verlag, New York, Toronto, 13 (1987)
Carr JP, Hampson WA, Chem. Rev., 72, 682 (1972)
Weinberg NL, Weinberg HR, Chem. Rev., 68, 449 (1968)
Gabe DR, "Principle of Metal Surface Treatment and Protection," 2nd ed., Pergamon Press, Ins., Elmsford, NY, 66 (1978)
Chang H, Johnson DC, J. Electrochem. Soc., 137, 2452 (1989)
Bard AJ, Faulkner LR, "Electrochemical Method," Chap. 1, John Wiley and Sons, New York, Toronto, 21 (1980)
Somorjai GA, Adv. Catal., 26, 1 (1977)