Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Finite Element Method를 사용하는 Phthalic Anhydride 생산을 위한 불균일 활성의 V2O5-TiO2 이중 촉매 충전층 반응기 해석
Dual-Catalytic Fixed-Bed Reactor Analysis Using Finite Element Method for the Phthalic Anhydride Production over V2O5-TiO2 Catalyst with Non-Uniform Activities
HWAHAK KONGHAK, June 1997, 35(3), 380-389(10), NONE
Download PDF
Abstract
불균일 활성의 vanadia-titania촉매를 이중층으로 충전시킨 이중 충전층 촉매 반응기를 o-xylene을 산소로 산화시켜 무수프탈산을 생산하는 고정층 반응기로 사용하였다. 이중층 반응기를 묘사하는 비정상상태, 2차원의 유사 균일상 모델을 구성하고, FEM으로 해석하였다. 무수프탈산 생산 공정인 이중 촉매 충전층 반응기에서 측정한 온도분포를 기준으로, 같은 조업조건하에서 이중 촉매 충전층 반응기의 유체 온도 분포와 이에 상응하는 농도 분포 및 냉매의 온도 분포를 모사하였다. 기준 온동 분포와 이중 촉매 충전층 반응기의 온도 분포에 대하여 같은 조업 조건하에서 균일 활성의 단일 촉매층 반응기 안의 유체의 온도, 농도 및 냉매의 온도 분포를 비교하였다. 이중 촉매층의 모델 예측은 실험결과와 온도 분포의 전 영역에 걸쳐 잘 일치하였으며, 단일 촉매층 반응기는 열점이 생기는 영역에서 이중 촉매층 반응기보다 높은 온도상승을 일으켰다. 따라서, 활성도 분포를 가지는 이중 촉매 충전층 반응기를 이용하면 균일 활성도의 단일 촉매 충전층 반응기에서 일어나는 과도한 온도 상승을 억제시키는 역할을 하여 안전 조업을 할 수 있을 것으로 예측된다.
A dual catalytic fixed-bed reactor packed with two layers of vanadia-titania catalyst having non-uniform activities is used as a fixed-bed reactor for oxidation of o-xylene by air into phthalic anhydride. Unsteady-state and two dimensional pseudohomogeneous model describing the dual catalytic fixed-bed reactor is simulated by using finite element method. We simulated fluid temperature profile and its corresponding concentration and coolant temperature profiles of the dual-catalytic fixed-bed reactor on the basis of the temperature profile measured from the reactor of the process producing phthalic anhydride in an industrial plant at the same operating conditions. We compared temperature, concentration and coolant temperature profiles of a uniform catalytic fixed-bed reactor with uniform activity with the standard(measured) profile and with the temperature profile of the dual-catalytic fixed-bed reactor at the same operating conditions. Model prediction of dual-catalytic fixed-bed reactor is in good agreement with experimental data over the entire range of the temperature profile, and uniform catalytic fixed-bed reactor generated higher temperature rise than non-uniform catalytic fixed-bed reactor in the hot spot region. Consequently, the dual-catalytic fixed-bed reactor with activity-profiled plays a decisive role to suppress excessive temperature rise of hot spot which is occurred in the uniform catalytic fixed-bed reactor, and it predicts safe operation of the reactor.
References
VanWelsenaere RJ, Froment GF, Chem. Eng. Sci., 25, 1503 (1970)
Froment GF, Ind. Eng. Chem., 59, 18 (1967)
Nikolov V, Klissurski D, Anastssov A, Catal. Rev.-Sci. Eng., 23, 319 (1991)
Wellauer TP, Cresswell RL, Newson EJ, Chem. Eng. Sci., 41(4), 765 (1986)
Pirkle JC, Wachs IE, Chem. Eng. Prog., Aug., 29 (1987)
Pirkle JC, Reyrs SC, Hagen PS, Kheshgi H, Schiesser WE, Comput. Chem. Eng., 11(6), 737 (1987)
Scrzypek J, Grzesik M, Galantowicz M, Solinski J, Chem. Eng. Sci., 40, 611 (1985)
Giudice SD, Trotta A, Chem. Eng. Sci., 33, 697 (1978)
Mills PL, Lai SS, Dudukovic MP, Ind. Eng. Chem. Fundam., 24, 64 (1985)
Mills PL, Lai S, Dudukovic MP, Ramachandrau PA, Ind. Eng. Chem. Res., 27, 191 (1988)
Mills PL, Lai S, Dudukovic MP, Ramachandr PA, Comput. Chem. Eng., 12, 37 (1988)
Calderbank P, Chandrasekharan K, Fumagalli K, Chem. Eng. Sci., 32, 1435 (1977)
Nikolov VA, Anastasov AI, Chem. Eng. Sci., 47, 1291 (1992)
Papageorgiou JN, Abello MC, Froment GF, Appl. Catal. A: Gen., 120(1), 17 (1994)
Carberry J, White D, Ind. Eng. Chem., 61, 27 (1969)
Courtine P, Vejux CR, Acad. Sci. Paris, 286, 135 (1978)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Park YO, Ph.D. Thesis, University of Houston (1989)
Stefano DG, Antonio T, Chem. Eng. Sci., 33, 697 (1978)
Froment GF, Ind. Eng. Chem., 59, 18 (1967)
Nikolov V, Klissurski D, Anastssov A, Catal. Rev.-Sci. Eng., 23, 319 (1991)
Wellauer TP, Cresswell RL, Newson EJ, Chem. Eng. Sci., 41(4), 765 (1986)
Pirkle JC, Wachs IE, Chem. Eng. Prog., Aug., 29 (1987)
Pirkle JC, Reyrs SC, Hagen PS, Kheshgi H, Schiesser WE, Comput. Chem. Eng., 11(6), 737 (1987)
Scrzypek J, Grzesik M, Galantowicz M, Solinski J, Chem. Eng. Sci., 40, 611 (1985)
Giudice SD, Trotta A, Chem. Eng. Sci., 33, 697 (1978)
Mills PL, Lai SS, Dudukovic MP, Ind. Eng. Chem. Fundam., 24, 64 (1985)
Mills PL, Lai S, Dudukovic MP, Ramachandrau PA, Ind. Eng. Chem. Res., 27, 191 (1988)
Mills PL, Lai S, Dudukovic MP, Ramachandr PA, Comput. Chem. Eng., 12, 37 (1988)
Calderbank P, Chandrasekharan K, Fumagalli K, Chem. Eng. Sci., 32, 1435 (1977)
Nikolov VA, Anastasov AI, Chem. Eng. Sci., 47, 1291 (1992)
Papageorgiou JN, Abello MC, Froment GF, Appl. Catal. A: Gen., 120(1), 17 (1994)
Carberry J, White D, Ind. Eng. Chem., 61, 27 (1969)
Courtine P, Vejux CR, Acad. Sci. Paris, 286, 135 (1978)
Ergun S, Chem. Eng. Prog., 48, 89 (1952)
Park YO, Ph.D. Thesis, University of Houston (1989)
Stefano DG, Antonio T, Chem. Eng. Sci., 33, 697 (1978)