Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
솔-젤 공정과 초임계 건조에 의한 물유리로부터 투명 에어로젤의 제조
Manufacturing Ultraporous Transparent Aerogel from Water Glass by Sol-Gel Processing and Supercritical Drying
HWAHAK KONGHAK, August 1997, 35(4), 552-556(5), NONE
Download PDF
Abstract
솔-젤 공정과 저온 초임계 이산화탄소 건조를 통하여 물유리로부터 저가의 투명 초다공성 에어로젤을 제조하였다. 물유리 원료에 일정량의 물을 첨가하여 희석시킨 후 교반하면서 염산이나 황산 촉매를 첨가하고 밀도를 조정하기 위하여 알코올 등의 희석제를 가하여 졸화한 수 40℃에서 젤화하여 습윤젤을 얻어내었다. 습윤젤의 건조시 미세 기공이 파괴되는 것을 방지하기 위하여 초임계 이산화탄소를 사용하여 건조시켜 에어로젤을 얻었다. 건조후의 에어로젤은 친수성을 띄고 있어 공기 중에 노출시 습기로 인하여 기공이 파괴되는 것을 관찰하였으며 이를 예방하기 위하여 메탄올을 사용한 메톡시화 반응을 거쳐 소수성의 에어로젤로 안정화하였다. 다양한 조건하의 실험을 통하여 습윤젤의 제조시 첨가된 산과 희석제의 양이 젤화시간에 미치는 영향을 평가하였다. 또, 건조된 에어로젤의 밀도, FTIR, TGA, UV 투과도 등의 분석을 통하여 조업 조건에 따른 에어로젤의 물리적인 특성을 분석하였다. 본 연구에서 제조된 에어로젤의 최저 밀도는 0.057g/cm3으로 저가의 투명 초단열 신소재로서의 가능성을 확인하였다.
Utilizing sol-gel processing and supercritical CO2 drying, low-price transparent aerogel was synthesized from waterglass. By adding water the feed waterglass was diluted and subsequently the aqueous waterglass sol liquor was obtained by mixing and adding hydrochloric acid or sulfuric acid as a catalyst and alcohol as a diluent. The wet waterglass gel was then obtained by gelating the sol liquor in an oven at 313.15K. Purified wet gel was obtained by removing the residual salts in the open pores of the wet gel by water and by substituting the water in the pores by alcohol. The wet gel is in general extremely porous and fragile. Thus, to prevent the destruction of the pores, supercritical CO2 drying was employed to obtain dried aerogel. The hydrophilic nature of the dried aerogel was stabilized as hydrophobic by the surface methoxy with methanol to prevent destruction of the pores of the gel by moisture in the air. The effects of different type of acids and diluent on the gelation time and on the physical properties of the dried aerogel were quantitatively evaluated by the measurement of density and such analysis as FTIR, TGA, and UV transmitivity. The lowest density obtained in the present work was 0.057g/cm3 and accordingly we found that the waterglass aerogel can be a cheap but valuable new material for transparent thermal insulation.
References
Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press, CA (1990)
Hunt AJ, Russo RE, J. Non-Cryst. Solids, 86, 219 (1986)
Kistler SS, Nature, 127, 741 (1931)
Brinker CJ, Keefer KD, J. Non-Cryst. Solids, 48, 47 (1982)
Brinker CJ, Drotning DW, Scherer GW, "A Comparison between the Densification Kinetics of Colloidal and Polymeric Silica Gels," Brinker, C.J., Clark, D.E. and Ulrich, D.R., (Eds.), "Better Ceramics through Chemistry I," p. 25 (1984)
Iler RK, "Chemistry of Silica," John Wiley & Sons, NY (1978)
McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction Principles and Practice," 2nd ed., Butterworth-Heinemann, Boston (1994)
Mertens G, Fripiat JJ, J. Colloid Interface Sci., 42, 169 (1973)
Hunt AJ, Russo RE, J. Non-Cryst. Solids, 86, 219 (1986)
Kistler SS, Nature, 127, 741 (1931)
Brinker CJ, Keefer KD, J. Non-Cryst. Solids, 48, 47 (1982)
Brinker CJ, Drotning DW, Scherer GW, "A Comparison between the Densification Kinetics of Colloidal and Polymeric Silica Gels," Brinker, C.J., Clark, D.E. and Ulrich, D.R., (Eds.), "Better Ceramics through Chemistry I," p. 25 (1984)
Iler RK, "Chemistry of Silica," John Wiley & Sons, NY (1978)
McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction Principles and Practice," 2nd ed., Butterworth-Heinemann, Boston (1994)
Mertens G, Fripiat JJ, J. Colloid Interface Sci., 42, 169 (1973)