ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

납사 탈황 공정의 상세 모델링 및 동적모사

Rigorous Modelling and Dynamic Simulation of an Industrial Naphtha Hydrodesulfurization Process

HWAHAK KONGHAK, October 1997, 35(5), 791-798(8), NONE
downloadDownload PDF

Abstract

상업 운전 중인 납사 탈황 공정의 상세 모델링을 2차원 공간(축 방향과 반경 방향)에 대하여 수행하였다. 탈황 반응식은 Gate등이 제안한 반응식을 사용하였으며 실험 상수들은 설계 데이터와 운전 데이터로부터 구하였다. 탈황 반응기의 수학적 표현은 편미분식과 비 선형 대수식의 조합으로 이루어져 있다. 개발된 수학적 모델식에 기초하고 gPROMS 소프트웨어 패키지를 이용하여 상업 탈황 반응기의 동적모사를 수행하였다. 동적모사를 위한 수치해석법은 orthogonal collocation method on finite element를 사용하였다. 동적모사를 위한 여러 파라미터들은 실공정 건설을 위한 설계 데이터를 이용하였으며 동적모사 결과를 설계 및 운전 데이터와 비교하였다. 이때 그 편차는 3%미만으로 나타났다. 위의 결과를 바탕으로 하여 납사 탈황 공정에 대한 모델식 및 동적모사의 여러 응용에 관하여 논하였다.
A rigorous mathematical model of an industrial naphtha hydrodesulfurization(HDS) reactor is developed in two dimensional spatial fields. Reaction kinetics proposed by Gate et al. is used for HDS reaction and the values of empirical parameters are calculated from design and operation data. The resulting mathematical statement of the HDS reactor is described in terms of a mixed set of partial differential and non-linear algebraic equations. Based on the mathematical model, dynamic simulation of a commercial HDS reactor is carried out using gPROMS software package. Orthogonal collocation method on finite elements is employed as a numerical solution method to solve the problem. Actual design data are utilized for dynamic simulation and the results are compared with design and operation data. The deviation between them is less than 3%. Considering the achievements of this work, some applications of model-based dynamic simulation of the naphtha HDS are discussed.

References

Mcketta JJ, "Encyclopedia of Chemical Processing and Design," Dekker, New York, 15, 216 (1982)
Frye CG, Mosby JF, Chem. Eng. Prog., 63(9), 66 (1967)
Sattefield CN, Roberts GW, AIChE J., 14(1), 159 (1968) 
Gates BC, Katzer JR, Schuit GCA, "Chemistry of Catalytic Processes," McGraw-Hill, New York, 390 (1977)
Oh M, Pantelides CC, Comput. Chem. Eng., 20(6-7), 611 (1996) 
Park SY, Oh M, Moon I, HWAHAK KONGHAK, 34(5), 585 (1996)
Meyers RA, "Handbook of Petroleum Refining Proceses," Second Edition, McGraw-Hill, New York (1997)
Twigg MV, "Catalyst Handbook," Wolfe Publishing Ltd., London (1989)
Tarhan MO, "Catalytic Reactor Design," McGraw-Hill, New York (1983)
Carver MB, In Foundations of Computer-Aided Process Design, 369 (1981)
Schiesser, "Numerical Method of Lines," Academic Press, New York (1991)
Petzold LR, In Proceedings IMACS World Congress, Montreal, Canada, August, 65 (1982)
Jarvis, Pantelides CC, Technical Report, Centre for Process Systems Engineering, Imperial College, London (1992)
Duff JS, ACM Trans. Math. Softw., 7, 315 (1980) 
Finalayson BA, "Nonlinear Analysis in Chemical Engineering," McGraw-Hill, New York (1980)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로