Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
알루미나-탄화티타늄 복합체 방전가공의 수치해석 Ⅰ.정상상태 해석
Numerical Analysis of the Electro-discharge Machining Process for Alumina-Titanium Carbonate Composite
HWAHAK KONGHAK, December 1997, 35(6), 850-855(6), NONE
Download PDF
Abstract
알루미나와 탄화티타늄이 혼합된 세라믹 복합체의 방전가공 현상에 대하여 방전열량이 연속적으로 공급되는 정상상태를 가정하여 갤러킨 방법으로 유한요소 해석을 수행하였다. 해석 결과 방전열속이 3.710×107cal/s·㎡인 경우 반경 20㎛, 깊이 5㎛ 정도의 홈이 파일 것으로 예측되었다. 방전열속을 5.565×107cal/s·㎡로 1.5배 정도 높인 경우에는 관심영역 안의 모든 알루미나가 녹았으며 탄화티타늄도 반경 30㎛, 깊이 25㎛에 상당하는 범위까지 녹는 것을 알 수 있었고, 방전흔은 적어도 반경 30㎛ 이상이 될 것으로 예측되었다. 방전열속이 7.420×107cal/s·㎡ 이상이 되면 피가공물이 완전히 녹아 가공표면이 거칠어질 수 있으므로 방전열속을 이 값 이상 올리지 않는 것이 바람직하다.
A finite element analysis has been performed for the electro-discharge machining of an alumina-titanium carbide(Al2O3-TiO2) composite, assuming that the electro-discharge system is in steady-state. A discharge heat flux of 3.710×107 cal/s·㎡ is shown to possibly make a crater with radius of 20㎛ and depth of 5㎛. When a discharge heat flux of 5.565×107 cal/s·㎡ is used, all of the alumina particles in the domain of intrest melts while the titanium carbide particles within the radius of 30㎛ and the depth of 25㎛ reach the melting point, thus the size of the crater formed becomes larger than 30㎛ in radius. It is not recommended to use a discharge heat flux of greater than 7.420×107 cal/s·㎡, because it may deteriorate the surface roughness.
References
Zingerman AS, Sov. Phys. Solid State, 1(2), 255 (1959)
Van Osenbruggen C, Philips Tech. Tijd., 30, 200 (1969)
Dharmadhikari SW, Sharma CS, "Determination of Material Removal in EDM using a Multiple Heat Source Model," IX AIMTDR Conference, IIT, Kanpur, 316 (1980)
Erden A, Kaftanoglu B, "Heat Transfer Modelling of Electric Discharge Machining," Proc. 21st Int. Mach. Tool Des. Res. Conf., 351 (1980)
Mukoyama Y, Bull. Jap. Soc. Prec. Eng., 2, 288 (1968)
Snoeys R, Van Dyck F, Annals CIRP, 20(1), 35 (1971)
Marty CC, "Investigation of Surface Temperature in Electro-Discharge Machining," Trans. ASME, J. ENg. Inds., Paper No. 76, WA/PROD-8 (1977)
Jilani ST, Pandey PC, Precision Eng., 4(4), 215 (1982)
Jilani ST, Pandey PC, J. Eng. Prod., 6, 123 (1983)
Pandit SM, Rajurkar KP, J. Heat Transf., 105, 555 (1983)
Madhu P, Jain VK, Sundararajan T, Comput. Eng., 2, 121 (1991)
Gadalla AM, Cheng YM, Conf. Mach. Comp. Mater. II, 17 (1993)
Bromley LA, Chem. Eng. Prog., 46(5), 221 (1950)
우정윤, 왕덕현, 윤존도, 안영철, "세라믹 복합체의 방전가공 특성," 한국정밀공학회 추계학술대회 논문집, 46 (1996)
윤존도, 고철호, 왕덕현, 안영철, "도전성 이차상을 포함하는 세라믹 복합체의 방전가공," 한국재료학회 추계학술발표회 초록집, 수원, A-34 (1996)
Van Osenbruggen C, Philips Tech. Tijd., 30, 200 (1969)
Dharmadhikari SW, Sharma CS, "Determination of Material Removal in EDM using a Multiple Heat Source Model," IX AIMTDR Conference, IIT, Kanpur, 316 (1980)
Erden A, Kaftanoglu B, "Heat Transfer Modelling of Electric Discharge Machining," Proc. 21st Int. Mach. Tool Des. Res. Conf., 351 (1980)
Mukoyama Y, Bull. Jap. Soc. Prec. Eng., 2, 288 (1968)
Snoeys R, Van Dyck F, Annals CIRP, 20(1), 35 (1971)
Marty CC, "Investigation of Surface Temperature in Electro-Discharge Machining," Trans. ASME, J. ENg. Inds., Paper No. 76, WA/PROD-8 (1977)
Jilani ST, Pandey PC, Precision Eng., 4(4), 215 (1982)
Jilani ST, Pandey PC, J. Eng. Prod., 6, 123 (1983)
Pandit SM, Rajurkar KP, J. Heat Transf., 105, 555 (1983)
Madhu P, Jain VK, Sundararajan T, Comput. Eng., 2, 121 (1991)
Gadalla AM, Cheng YM, Conf. Mach. Comp. Mater. II, 17 (1993)
Bromley LA, Chem. Eng. Prog., 46(5), 221 (1950)
우정윤, 왕덕현, 윤존도, 안영철, "세라믹 복합체의 방전가공 특성," 한국정밀공학회 추계학술대회 논문집, 46 (1996)
윤존도, 고철호, 왕덕현, 안영철, "도전성 이차상을 포함하는 세라믹 복합체의 방전가공," 한국재료학회 추계학술발표회 초록집, 수원, A-34 (1996)