Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
상압식 나일론-6 중합반응기 상층부의 연속류 교반조 반응기로의 모델링
Modelling of the Top Portion of Atmospheric Nylon-6 Polymerization Reactor as a CSTR
HWAHAK KONGHAK, December 1997, 35(6), 856-862(7), NONE
Download PDF
Abstract
연속 상압식 나일론-6 중합반응기에서 비등과 혼합이 일어나는 상층부를 연속류 교반조 반응기로 모델링하였다. 나일론-6의 중합반응 메카니즘을 도입하고 물질수지와 에너지수지를 세워 Newton-Raphson법으로 해를 구하였다. 반응에 영향을 주는 인자들에 대하여 여러 가지 경우를 가정하여 수치해를 구한 결과, 공급되는 물의 함량이 반응 온도와 물의 농도, 그리고 에너지 소모량에 가장 큰 영향을 끼침을 보였다. 반응 특성에 영향을 주지 않으면서 에너지를 절감하기 위해서는 공급원료 중의 물의 함량을 줄이고 열매유의 온도를 낮추어줌으로써 반응 온도와 물의 온도를 일정하게 유지해야한다. 한편, 공급원료 중 초산의 함량을 증가시키면 단량체의 전환율이 커지고 아세틸 말단기의 비중도 커지므로 고분자의 중합도 및 다분산도에 큰 영향을 끼친다.
The top portion of a continuous, atmospheric reactor for nylon-6 polymerization, where the reactants are being boiled and mixed together, is modelled by a continuous flow stirred tank reactor(CSTR). The polymerization mechanism of nylon-6 has been introduced, and the material and energy balances are solved by Newton-Raphson method. The numerical solutions under various conditions of the parameters involved in the reaction show that the feed water content has the greatest influence on the reaction temperature, water concentration and energy consumption. Keeping the reaction temperature and water concentration constant by reducing both the feed water content and the jacket temperature is the best way to save energy without any influence on the reaction characteristics. Also, it is shown that if the feed acetic acid content increases, both the conversion of monomer and the proportion of acetyl end-group increase, and this affects the degree of polymerization and polydispersity.
Keywords
References
Reimschuessel HK, Nagasubramanian K, Chem. Eng. Sci., 27, 1119 (1972)
Reimschuessel HK, J. Polym. Sci. Macromol. Rev., 12, 65 (1977)
Tirrell MV, Pearson GH, Weiss RA, Laurence RL, Polym. Eng. Sci., 15, 386 (1975)
Arai Y, Tai K, Teranishi H, Tagawa T, Polymer, 22, 273 (1981)
Gupta S, Kumar A, Agrawal KK, J. Appl. Polym. Sci., 27, 3089 (1982)
Tai K, Arai Y, Tagawa T, J. Appl. Polym. Sci., 28, 2527 (1983)
Ramagopal A, Kumar A, Gupta SK, J. Appl. Polym. Sci., 28, 2261 (1983)
Ray AJ, Gupta SK, Polym. Eng. Sci., 26(15), 1033 (1986)
Gupta S, Tjahjadi M, J. Appl. Polym. Sci., 33, 933 (1987)
Srivastava D, Gupta SK, Polym. Eng. Sci., 31(8), 596 (1991)
Gupta A, Gupta SK, Chem. Eng. Commun., 113, 63 (1992)
Ahn YC, Polym. Eng. Sci., 37(2), 484 (1997)
Jacobs H, Schweigman C, Proceedings of the 5th European/2nd International Symposium on Chemical Reaction Engineering, Amsterdam, May 2-4, p. B7.1 (1972)
Reimschuessel HK, J. Polym. Sci. Macromol. Rev., 12, 65 (1977)
Tirrell MV, Pearson GH, Weiss RA, Laurence RL, Polym. Eng. Sci., 15, 386 (1975)
Arai Y, Tai K, Teranishi H, Tagawa T, Polymer, 22, 273 (1981)
Gupta S, Kumar A, Agrawal KK, J. Appl. Polym. Sci., 27, 3089 (1982)
Tai K, Arai Y, Tagawa T, J. Appl. Polym. Sci., 28, 2527 (1983)
Ramagopal A, Kumar A, Gupta SK, J. Appl. Polym. Sci., 28, 2261 (1983)
Ray AJ, Gupta SK, Polym. Eng. Sci., 26(15), 1033 (1986)
Gupta S, Tjahjadi M, J. Appl. Polym. Sci., 33, 933 (1987)
Srivastava D, Gupta SK, Polym. Eng. Sci., 31(8), 596 (1991)
Gupta A, Gupta SK, Chem. Eng. Commun., 113, 63 (1992)
Ahn YC, Polym. Eng. Sci., 37(2), 484 (1997)
Jacobs H, Schweigman C, Proceedings of the 5th European/2nd International Symposium on Chemical Reaction Engineering, Amsterdam, May 2-4, p. B7.1 (1972)