ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

이산화탄소 수소화반응에 대한 주기조작의 영향

Effect of Periodic Operation on Hydrogenation of Carbon Dioxide

HWAHAK KONGHAK, February 1998, 36(1), 73-77(5), NONE
downloadDownload PDF

Abstract

고정층 반응기에서 니켈촉매를 사용하여 반응온도, 공간속도 및 반응물의 몰분율을 변화시키면서 이산화탄소의 수소화반응을 수행하였다. 공간속도가 300cm3/min·g-cat 이하에서는 이산화탄소의 전화율이 공간속도의 영향을 받지 않았다. 반응온도가 상승함에 따라 이산화탄소의 전화율은 증가하여 평형전화율에 근접하는 경향을 보였다. 이산화탄소의 전화율이 최대가 되는 최적 반응물조성은 관찰되지 않았다. 주기조작에서 평균 반응물 조성을 메탄화반응의 양론비(H2/Co2=4)로 유지시키면서 cycle split와 반응물 주입주기의 영향을 연구하였다. 반응물농도의 주기적인 변화에 의하여 이산화탄소의 전화율과 메탄으로의 선택도가 정상상태조작에 비하여 감소하였다. 그러나 일산화탄소의 선택도는 증가하였으며 따라서 주기조작이 역수성가스화반응을 촉진시킴을 알 수 있었다. 반응물 주입주기의 변화에 대한 이산화탄소 전화율의 resonance 현상이 관찰되었다.
Catalytic hydrogenation of carbon dioxide over Ni/SiO2 catalyst in a fixed-bed reactor was studied by varying the reaction temperature, space velocity, and mole fraction of the feed. Space velocity under 300 cm3/min·g-cat had no effect on the conversion of CO2. Conversion of CO2 increased and approached to the equilibrium conversion as the reaction temperature increased. There was no optimum fled composition for maximum COE conversion. Keeping the average feed composition in periodic operation with stoichiometric ratio of methanation reaction(H2/CO2=4), effect of cycle splits and periods of feeding cycle were studied. In periodic operation, conversion of CO2 and selectivity of methane were lower than those of steady state runs. However, selectivity to CO increased by periodic operation. Cycle period resonance of CO2 conversion was observed.

References

Lee YS, Yoon HG, Chung JS, Kim YG, HWAHAK KONGHAK, 27(5), 647 (1989)
Koh DJ, Chung JS, Kim YG, HWAHAK KONGHAK, 31(3), 346 (1993)
Lee HJ, Park JW, Hahm HS, HWAHAK KONGHAK, 34(6), 716 (1996)
Lee KH, Lee JS, Korean J. Chem. Eng., 12(4), 460 (1995)
Lee MD, Lee JF, Chang CS, Bull. Chem. Soc. Jpn., 62, 2756 (1989) 
Weatherbee GD, Bartholomew CH, J. Catal., 68, 67 (1981) 
Suzuki T, Saeki K, Mayama T, Hirai T, Hayashi S, React. Kinet. Catal. Lett., 44, 489 (1991) 
Guerrero-Ruiz A, Rodriguez-Ramos I, React. Kinet. Catal. Lett., 29, 93 (1985) 
Iiuka T, Tanaka Y, Tanabe K, J. Mol. Catal., 17, 381 (1982) 
Kim YW, Shin CS, Lee WY, Rhee HK, HWAHAK KONGHAK, 30(1), 116 (1992)
Adesina AA, Hudgins RR, Silveston PL, Can. J. Chem. Eng., 64, 447 (1986)
Mattman R, Hiemstra S, J. Catal., 62, 349 (1980) 
Weatherbee GD, Bartholomew CH, J. Catal., 77, 460 (1982) 
Kuei CK, Lee MD, Can. J. Chem. Eng., 69, 347 (1991)
Nappi A, Fabbricino L, Hudgins RR, Silveston PL, Can. J. Chem. Eng., 63, 963 (1985)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로