ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

연소가스로부터 CO2 회수를 위한 PSA 공정의 모사

Simulation of PSA Process for CO2 Recovery from Flue Gas

HWAHAK KONGHAK, August 1998, 36(4), 562-570(9), NONE
downloadDownload PDF

Abstract

연소가스로부터 CO2를 회수하기 위한 Pressure Swing Adsorption(PSA) 공정의 전산모사를 통해 감압단계, 진공단계, 압력균등화단계 및 세정단계 등이 포함된 여러 공정의 성능을 비교, 분석함으로써 최적의 공정을 찾고자 하였다. 본 연구에서는 PSA공정의 동특성이 고려되었으며 흡착제로는 활성탄이 이용되었다. 압력균등화단계의 도입은 감압단계에서 손실되는 생성물의 양을 줄이고 탑내에 존재하는 여러 성분들을 재분배하여 회수율과 순도를 증가시켰으며 세정단계의 도입을 통해 진공단계에서 얻어진 고농도의 CO2를 환류시킴으로써 순도를 증가시킬 수 있었다. 특히 압력균등화단계와 세정단계를 결합하여 공정을 구성하였을 때 압력균등화단계는 분리능력의 증가와 함께 탑내의 N2 농도를 최소화시켜 성능을 향상시키는데 중요한 역할을 한다는 사실을 확인하였으며 CO2의 회수율이 55%일 때 최고 순도는 97%를 얻을 수 있었다.
The simulation of pressure swing adsorption(PSA) process for recovering highly pure CO2 from flue gas was performed. Seven different processes including blowdown, pressure equalization, rinse and/or evacuation step were compared to obtain optimal process. In this study, bed dynamics was considered for the better simulation result. Activated carbon was used as an adsorbent. Pressure equalization contributed to increase the recovery and purity by preventing CO2 loss at blowdown and redistributing the components in the bed. And also, rinse, recycling the product gas recovered at evacuation step, conduced to increase the purity by readsorbing highly concentrated CO2. Especially, pressure equalization step combined with rinse step plays a key role in improving the performance of process because of minimizing the concentration of N2 in bed and increasing pressure difference between the bed pressure and atmospheric pressure. Maximum purity was about 97% and recovery at that point was about 55%.

References

Ruthven DM, Farooq S, Knaebel KS, "Pressure Swing Adsorption," VCH, New York (1994)
Yang RT, "Gas Separation by Adsorption Process," Butterworths, Boston (1987)
Doong SJ, Yang RT, AIChE J., 32, 397 (1986) 
Kim WG, Yang J, Han S, Cho C, Lee CH, Lee H, Korean J. Chem. Eng., 12(5), 503 (1995)
Yang J, Cho C, Baek KH, Lee CH, HWAHAK KONGHAK, 35(4), 545 (1997)
Suh SS, Shin CB, HWAHAK KONGHAK, 32(3), 414 (1994)
Kikinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714 (1993) 
Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995) 
Hassan MM, Raghavan NS, Ruthven DM, Chem. Eng. Sci., 42, 2037 (1987) 
Jhang Y, M.S. Dissertation, Sogang Univ., Seoul, Korea (1997)
Karanth NG, Hughes R, Chem. Eng. Sci., 29, 197 (1974) 
Farooq S, Hassan MM, Ruthven DM, Chem. Eng. Sci., 43, 1017 (1988) 
Press WH, Fannery BP, "Numerical Resioes in C," Cambridge University Press, London (1990)
Sun LM, Meunier F, AIChE J., 37, 244 (1991) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로