ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

수직 모세관내 공기-페놀수용액의 상향흐름 특성

Flow Characterization of Upward Air-Aqueous Phenol Flow in Vertical Capillaries

HWAHAK KONGHAK, October 1998, 36(5), 682-686(5), NONE
downloadDownload PDF

Abstract

단일 모세관내 흐름에서 기액상의 혼합용액의 흐름은 흐름패턴의 전이현상에 영향을 미치는데, 특히 기체 및 액체유량, 표면장력, 모세관의 너비 등이 주로 영향을 끼치게 된다. 본 연구에서는 수직 상향류 기액상흐름의 동력학적 거동 및 흐름패턴에 대해 조사하였으며, 이중에서 기액상의 유량, 모세관의 너비, 페놀용액의 농도 등이 흐름패턴에 미치는 영향에 대하여 조사하였다. 흐름패턴의 전이양상은 액체유량의 변화보다 기체유량의 변화에 대해서 보다 더 명확하게 나타났다. 잘 발달된 slug의 영역을 나타내는 기체 Reynolds수의 영역은 비교적 좁게 나타났으며, 액체유량에 대해서는 별 영향이 없는 것으로 나타났다. 마지막으로 무차원군수인 Froude수, Eotvos수를 이용하여 모세관의 너비, 표면장력, 그리고 유량의 영향을 종합적으로 살펴보았다.
In this study, the hydrodynamic behavior and flow patterns of vertical upward gas-liquid flow have been studied. A bundle of square glass capillaries was used to observe and evaluate the hydrodynamic behavior of flow. The flow pattern was found by using the flow visualization technique. The effects of gas flow rate, size of capillaries and phenol concentration upon the flow regime were studied. The trends of the transitions were more evident with respect to the change of gas flow rate than that of liquid flow rate. The range of gas Reynolds numbers supporting a well-developed slug flow was relatively narrow and almost independent on the liquid flow rate. For three different concentrations, almost the same flow patterns were obtained. Finally, the effects of capillary site, surface tension, and flow rates were combinded by using dimensionless groups such as Froude number and Eotvos number.

References

Bilicki Z, Kestin J, Water Res., 1, 367 (1967) 
Bousman WS, Mcquillen JB, Witte LC, Int. J. Multiph. Flow, 22(6), 1035 (1996) 
Brauner N, Barner D, Chem. Eng. Sci., 41(1), 159 (1986) 
Chung WC, HWAHAK KONGHAK, 12(3), 173 (1974)
Irandoust S, Andersson B, Comput. Chem. Eng., 13(4-5), 519 (1989) 
Irandoust S, Andersson B, Ind. Eng. Chem. Res., 28, 1684 (1989) 
Kim HI, Park JY, HWAHAK KONGHAK, 18(3), 133 (1980)
Kim S, Abraham MA, Theor. Appl. Chem. Eng., 1, 577 (1995)
Kumar A, Degaleesan TE, Laddha GS, Hoelscher HE, J. Chem. Eng., 54, 503 (1976)
Orell A, Rembrand R, Ind. Eng. Chem. Fundam., 25, 196 (1986) 
Pedersen H, Horvath C, Ind. Eng. Chem. Fundam., 20, 181 (1981) 
Pinto AM, Campos JB, Chem. Eng. Sci., 51(1), 45 (1996) 
Taitel Y, Bornea D, Dukler AE, AIChE J., 26(3), 345 (1980) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로