Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Perovskite(La0.8Sr0.2 CuO3) 전극을 이용한 이산화탄소의 전기화학적 환원에 관한 연구
A Study on Electrochemical Reduction of CO2 by using the Perovskite Electrode
HWAHAK KONGHAK, October 1998, 36(5), 751-758(8), NONE
Download PDF
Abstract
전기전도도가 높고 산화환원력이 우수한 Cu계 perovskite(La0.8Sr0.2 CuO3) 전극을 이용하여 이산화탄소의 전기화학적 환원반응 특성을 연구하였다. 이산화탄소를 KOH전해액에 용해하여 전기화학적 환원반응(전위 범위 : -2.0- -3.OV vs. Ag/AgCl)을 수행한 결과, 알코올(메탄올, 에탄올, 그리고 프로판올)과 아세트알데히드 등이 얻어졌다. 생성물의 전체 효율은 인가전압-2.OV에서 최적이었고, 메탄올을 제외한 생성물의효율은 반응온도에 반비례하였다. 반응온도에 따른생성물의 효율은 5℃에서 아세트알데히드와 에탄올, 10℃에서는 프로판올, 그리고 30℃에서는 메탄올이 최대값을 보였다. 또한 효율에 근거한 이산화탄소 환원 메커니즘에 따르면 에탄올과 아세트알데히드는 중간체 역할을 하는 것으로 판단되었다.
By using the electrode made of Cu based perovskite which has high conductivity and excellent redox power, the characteristics of electrochemical reduction of carbondioxide were studied. After carbondioxide is dissolved in the KOH electrolyte and carried out electrochemical reduction at the negative potential (range : -2.0--3.0 V vs. Ag/AgCl), alcohols(methanol, ethanol, and propanol) and acetaldehyde are produced. The total efficiency of products is optimum at -2.0V vs. Ag/AgCl and with the exception of methanol, the efficiency of products is inversely proportional to the reaction temperature. The optimum reaction temperatures at which the highest efficiency could be got for individual products are 5℃ for acetaldehyde and ethanol, 10℃ for propanol and 30℃ for methanol. And according to the tentative mechanism for the reduction of carbondioxide on the basis of these experimental efficiencies of products, ethanol and acetaldehyde were intermediates in this electrochemical reaction.
References
Sullivan BP, Krist K, Guard HE, "Electrochemical and Electrocatalytic Reactions of Carbon Dioxide," Elsevier, Amsterdam, Netherlands (1993)
Keeling L, Bacastow RB, Carter AF, Peper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H, Geophys. Monograph, 55, 165 (1989)
Stephen CP, Charles DK, Proceedings International Symposium '90 on Global Environment and Energy Issues, L1-3, Fukuoka, Nov. 19-21, Japan (1990)
Park SE, Chang JS, Lee KW, Chem. Ind. Technol., 12(1), 17 (1994)
Park JH, Moon HK, Lee SI, Wee JH, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 2(2), 2035 (1996)
Young JG, Moon JY, Jung SM, Jung OW, Park DW, Lee JK, Theor. Appl. Chem. Eng., 2(1), 1301 (1996)
Lee SY, Lee SI, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 1(2), 797 (1995)
Cook RL, Macduff RC, Sammells AF, J. Electrochem. Soc., 136(7), 1982 (1989)
Hori Y, Murata A, Ito S, Chem. Lett., 1567 (1989)
Hori Y, Murata A, Ito S, Chem. Lett., 1231 (1990)
Noda H, Ikeda S, Oda Y, Ito K, Chem. Lett., 289 (1989)
Hori Y, Murata A, Electrochim. Acta, 35(11), 1777 (1990)
Frese KW, J. Electrochem. Soc., 138(11), 3338 (1991)
Frese KW, Canfield D, J. Electrochem. Soc., 131(11), 2518 (1984)
Furuya N, J. Electroanal. Chem., 217, 181 (1989)
DeWulf DW, Jin T, Bard AJ, J. Electrochem. Soc., 136(6), 1686 (1989)
Lim JH, Chun HS, HWAHAK KONGHAK, 35(1), 1 (1997)
Kim JJ, Chung SJ, Choi JW, Lee WY, HWAHAK KONGHAK, 20(4), 245 (1982)
Kim JB, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 26(5), 535 (1988)
Kim YH, Rhee CK, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 29(5), 596 (1991)
Lee BY, Lee CW, Bae JH, Shin BS, Choung SJ, HWAHAK KONGHAK, 35(4), 565 (1997)
Bandi A, J. Electrochem. Soc., 137, 2157 (1990)
Schwartz M, Cook RL, Kehoe VM, MacDuff RC, Patel J, Sammells AF, J. Electrochem. Soc., 140(3), 614 (1993)
Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press (1990)
Hori Y, Murata A, Takahashi R, J. Chem. Soc.-Faraday Trans., 85(8), 2309 (1989)
Kim MK, "Aspects of Provskite-type Oxides as Functional Material," (1991)
Obayashi H, Kudo T, Gejo T, Jpn. J. Appl. Phys., 13(1), 1 (1974)
Jun HJ, "Catalysis an Introduction," Hanlimwon, Seoul (1992)
Tejuca LG, Fierro JLG, "Properties and Applications of Perovskite-type Oxides," Marcel Dekker, New York (1993)
Yoshimura T, Maruyama T, Atake T, Saito T, Solid State Ion., 37, 289 (1990)
Yoon HS, Hwang UY, Park HS, HWAHAK KONGHAK, 34(5), 556 (1996)
Park JH, Oh BH, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 4, 1629 (1998)
Hara K, Tsuneto A, Kudo A, Sakata T, J. Electrochem. Soc., 141(8), 2097 (1994)
Kyriacou G, Anagnostopoulos A, J. Electroanal. Chem., 322, 233 (1992)
Cook RL, Macduff RC, Sammells AF, J. Electrochem. Soc., 135(6), 1320 (1989)
Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, New York (1972)
Keeling L, Bacastow RB, Carter AF, Peper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H, Geophys. Monograph, 55, 165 (1989)
Stephen CP, Charles DK, Proceedings International Symposium '90 on Global Environment and Energy Issues, L1-3, Fukuoka, Nov. 19-21, Japan (1990)
Park SE, Chang JS, Lee KW, Chem. Ind. Technol., 12(1), 17 (1994)
Park JH, Moon HK, Lee SI, Wee JH, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 2(2), 2035 (1996)
Young JG, Moon JY, Jung SM, Jung OW, Park DW, Lee JK, Theor. Appl. Chem. Eng., 2(1), 1301 (1996)
Lee SY, Lee SI, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 1(2), 797 (1995)
Cook RL, Macduff RC, Sammells AF, J. Electrochem. Soc., 136(7), 1982 (1989)
Hori Y, Murata A, Ito S, Chem. Lett., 1567 (1989)
Hori Y, Murata A, Ito S, Chem. Lett., 1231 (1990)
Noda H, Ikeda S, Oda Y, Ito K, Chem. Lett., 289 (1989)
Hori Y, Murata A, Electrochim. Acta, 35(11), 1777 (1990)
Frese KW, J. Electrochem. Soc., 138(11), 3338 (1991)
Frese KW, Canfield D, J. Electrochem. Soc., 131(11), 2518 (1984)
Furuya N, J. Electroanal. Chem., 217, 181 (1989)
DeWulf DW, Jin T, Bard AJ, J. Electrochem. Soc., 136(6), 1686 (1989)
Lim JH, Chun HS, HWAHAK KONGHAK, 35(1), 1 (1997)
Kim JJ, Chung SJ, Choi JW, Lee WY, HWAHAK KONGHAK, 20(4), 245 (1982)
Kim JB, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 26(5), 535 (1988)
Kim YH, Rhee CK, Lee WY, Rhee HK, Lee HI, HWAHAK KONGHAK, 29(5), 596 (1991)
Lee BY, Lee CW, Bae JH, Shin BS, Choung SJ, HWAHAK KONGHAK, 35(4), 565 (1997)
Bandi A, J. Electrochem. Soc., 137, 2157 (1990)
Schwartz M, Cook RL, Kehoe VM, MacDuff RC, Patel J, Sammells AF, J. Electrochem. Soc., 140(3), 614 (1993)
Brinker CJ, Scherer GW, "Sol-Gel Science," Academic Press (1990)
Hori Y, Murata A, Takahashi R, J. Chem. Soc.-Faraday Trans., 85(8), 2309 (1989)
Kim MK, "Aspects of Provskite-type Oxides as Functional Material," (1991)
Obayashi H, Kudo T, Gejo T, Jpn. J. Appl. Phys., 13(1), 1 (1974)
Jun HJ, "Catalysis an Introduction," Hanlimwon, Seoul (1992)
Tejuca LG, Fierro JLG, "Properties and Applications of Perovskite-type Oxides," Marcel Dekker, New York (1993)
Yoshimura T, Maruyama T, Atake T, Saito T, Solid State Ion., 37, 289 (1990)
Yoon HS, Hwang UY, Park HS, HWAHAK KONGHAK, 34(5), 556 (1996)
Park JH, Oh BH, Lim JH, Lee JK, Chun HS, Theor. Appl. Chem. Eng., 4, 1629 (1998)
Hara K, Tsuneto A, Kudo A, Sakata T, J. Electrochem. Soc., 141(8), 2097 (1994)
Kyriacou G, Anagnostopoulos A, J. Electroanal. Chem., 322, 233 (1992)
Cook RL, Macduff RC, Sammells AF, J. Electrochem. Soc., 135(6), 1320 (1989)
Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, New York (1972)