Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
알칼리 연료전지용 라니니켈 수소극에 미치는 PTFE의 영향
The Effects of PTFE on Raney Nickel Hydrogen Electrode for Alkaline Fuel Cell
HWAHAK KONGHAK, December 1998, 36(6), 833-838(6), NONE
Download PDF
Abstract
알칼리 연료전지용 라니니켈 수소극에서 PTFE가 전극 성능 및 촉매층 구조에 미치는 영향을 전기화학적 방법과 질소 흡착법 등을 이용하여 조사하였다. 본 연구에서 촉매층의 최적 PTFE함량은 8wt%였고, 라니니켈 수소극은 분극 초기에도 수소의 물질전달 저항에 의해 영향을 받고 있는 것으로 나타났다. 전기화학적 방법과 질소 흡착법을 이용한 촉매층의 구조 분석은 미세 기공 입구의 대부분이 PTFE에 의해 막혀 있음을 보여주었다. 전극 재료로 가장 많이 쓰이는 것 중의 하나인 Vulcan XC-72에 대한 비교 연구는 라니니켈에서 미세 기공의 막힘 정도가 Vulcan XC-72에 비해 훨씬 큼을 보여주었다.
The effects of PTFE on the electrode performance and on the structure of the catalyst layer in Raney nickel hydrogen electrode for alkaline fuel cell were investigated by using electrochemical and nitrogen adsorption methods. This study showed that the optimum PTFE content in the catalyst layer was 8 wt%, and that the Raney nickel hydrogen electrode was affected by the mass transfer resistance of hydrogen even in the beginning of polarization. The structural analysis of the catalyst layer using the electrochemical and nitrogen adsorption methods demonstrated that most entrances of the micropore were plugged with PTFE. The comparative study on Vulcan XC-72, one of the most used electrode material, showed that the extent of micropore plugging was a far greater in the Raney nickel than in Vulcan XC-72.
References
Mori T, Imahashi J, Kamo T, Tamura K, Hishinuma Y, J. Electrochem. Soc., 133, 896 (1986)
Kenjo T, J. Electrochem. Soc., 132, 1583 (1985)
Jo JH, Kim HJ, Moon SK, HWAHAK KONGHAK, 34(5), 629 (1996)
Wendt H, "Electrochemical Hydrogen Technologies," Elsevier Science, Amsterdam (1990)
Mund K, Retcher G, Strurm F, J. Electrochem. Soc., 124, 1 (1977)
Jenseit W, Khalil A, Wendt H, J. Appl. Electrochem., 20, 893 (1990)
Kenjo T, Electrochim. Acta, 33, 41 (1988)
Vielstich W, Holze R, Electrochim. Acta, 29, 607 (1984)
Shoor SK, Walker RD, Gubbins KE, J. Phys. Chem., 73, 312 (1969)
Tham MK, Walker RD, Gubbins KE, J. Phys. Chem., 74, 1747 (1970)
Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 182, 193 (1985)
Kenjo T, J. Electrochem. Soc., 132, 1583 (1985)
Jo JH, Kim HJ, Moon SK, HWAHAK KONGHAK, 34(5), 629 (1996)
Wendt H, "Electrochemical Hydrogen Technologies," Elsevier Science, Amsterdam (1990)
Mund K, Retcher G, Strurm F, J. Electrochem. Soc., 124, 1 (1977)
Jenseit W, Khalil A, Wendt H, J. Appl. Electrochem., 20, 893 (1990)
Kenjo T, Electrochim. Acta, 33, 41 (1988)
Vielstich W, Holze R, Electrochim. Acta, 29, 607 (1984)
Shoor SK, Walker RD, Gubbins KE, J. Phys. Chem., 73, 312 (1969)
Tham MK, Walker RD, Gubbins KE, J. Phys. Chem., 74, 1747 (1970)
Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 182, 193 (1985)