ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

활성탄을 이용한 암모니아의 흡착

Adsorption of Ammonia on Active Carbon

HWAHAK KONGHAK, April 1999, 37(2), 158-164(7), NONE
downloadDownload PDF

Abstract

활성탄 표면의 산소 함유 작용기의 양을 풍부히 하기 위하여 Calgon사의 F-400 활성탄을 출발물질로 질산과 과산화수소 처리를 통하여 표면 개질 활성탄을 제작하였으며, 처리된 활성탄을 수용액상에서의 암모니아 분리에 적용하여 보았다. 활성탄의 표면 형상을 관찰하기 위해서 SEM과 질소 흡착법을 사용하였으며, 화학적 성질을 관찰하기 위해서는 ESCA(Electron Spectroscopy for Chemical Analysis), CHNO분석 , slurry pH, IR분석을 행하였다. ESCA분석에 의하면 phenol, carbonyl, carboxylic group의 비율이 각각 약 20 %, 1 %, 15 %로서 나타났다. 활성탄을 2N, 10N의 과산화수소와 1 N, 5 N, 10 N의 질산으로 처리하였을 때 총 산소 함량이 각각 2.47, 5.15와 9.62, 16.6, 19.1 %로, 그리고 BET표면적이 1,283, 941, 988, 840, 560cm2/g으로 나타났다. 30℃에서 활성탄의 등온 흡착선도를 얻었으며, 2N, 10N의 과산화수소와 1 N, 5N, 10N의 질산으로 처리한 활성탄을 사용하였을 때, 100ppm암모니아용액에서 흡착 실험시 각각 0.56, 0.6, 0.65, 0.72, 2.21 mg/g의 흡착량을 보였다. 활성탄의 암모니아 흡착량은 총 산소 함유 작용기의 양에 따라서 증가하였는데, 이는 NH4+와의 이온교환능이 활성탄 표면에 존재할 수 있는 작용기 중게서 가장 강한 산인 carboxylic group의 양에 따라 증가하였다고 여겨지며, BET표면적과 암모니아 흡착능과의 직접적인 관계는 없음을 알 수 있었다.
Surface modified activated carbons(AC''''s) were prepared by HNO3, and H2O2, treatment to enrich oxygen-containing functional groups on the surface of AC''''s. Acid treated AC''''s were applied to the separation of ammonia loom aqueous solution. Analytical techniques used to examine the physical properties include SEM and N2 adsorption method and those used to examine the chemical properties include Electron Spectroscopy for Chemical Analysis(ESCA), CHNO analysis, slurry pH and IR. From ESCA analysis, phenolic, carboxyl and carboxylic groups occupied about 20 %, 1 % and 15 % of total functional groups, respectively. When AC''''s were treated with the solutions of 2 N and 10 N H2O2 and 1 N, 5 N and 10 N HNO3, total oxygen contents were 2.47, 5.15, 9.62, 16.6, 19.1 % and BET surface areas were 1283.6, 941.8, 988, 840 and 560 m2/g, respectively. NH3 adsorption isotherms of AC''''s were obtained at 30 ℃. For the AC''''s treated with the solutions of 2N and 10N H2O2 and 1 N, 5 N and 10N HNO3 the amount of ammonia adsorbed from the 100ppm ammonia solution were 0.56,0.6, 0.65, 0.72,2.21 mg/g, respectively. The amount of NH3 adsorbed on AC''''s increased with the total amount of oxygen-containing surface functional group. ion exchange ability with ammonium ion is thought to increase as the amount of carboxylic group(relatively strong acidic group) increases. No direct relationship between BET surface area of AC and NH3 adsorption capability was observed.

References

Petrucci RH, "General Chemistry-Principles and Modern Applications," Collier Macmillan (1989)
Mahajan OP, Youssef A, Sep. Sci. Technol., 13, 487 (1978)
Mercer BW, Ames LL, Touhill CJ, J. Water Pollut. Control Fed., 42, R95 (1970)
Pressley TA, Bishop DF, Environ. Sci. Technol., 6(7), 622 (1972) 
Barth EF, Brenner RC, J. Water Pollut. Control Fed., 40(12), 2040 (1968)
Tamon H, Okazaki M, Carbon, 34(6), 741 (1996) 
Dimotakis E, Cal M, Chem. Mater., 7(12), 2269 (1995) 
Vinke P, Van der Eijk M, Carbon, 32(4), 675 (1994) 
Morenocastilla C, Ferrogarcia MA, Joly JP, Bautistatoledo I, Carrascomarin F, Riverautrilla J, Langmuir, 11(11), 4386 (1995) 
Arico AS, Antonucci V, Carbon, 27(3), 337 (1989) 
Jankowska H, Swiakowski A, "Active Carbon," Ellis Horwood Ltd (1991)
Puri BR, J. Indian Chem. Soc., 41(8), 586 (1964)
Tabony J, Bomchil G, J. Chem. Soc.-Faraday Trans., 75, 1570 (1979) 
Zawadzki J, Polish J. Chem., 57, 207 (1983)
Ishizaki C, Marti I, Carbon, 19(6), 409 (1981) 
Friedel RA, Carlson GL, Fuel, 51, 194 (1972) 
Zawadzki J, Carbon, 16, 491 (1978) 
Friedel RA, Durie RA, Carbon, 5, 559 (1967) 
Friedel RA, Hofer LI, J. Phys. Chem., 74(15), 2921 (1970) 
Papirer E, Guyon E, Carbon, 16, 133 (1978) 
Mattson JS, Mark HB, J. Colloid Interface Sci., 31(1), 116 (1969) 
Zielke U, Huttinger KJ, Carbon, 34(8), 983 (1996) 
Kazmierczak J, Biniak S, J. Chem. Soc.-Faraday Trans., 87(21), 3557 (1991) 
Grzybek T, Polish. J. Chem., 68, 1649 (1994)
Lee JS, Kang TJ, Carbon, 35(2), 209 (1997) 
Zielke U, Huttinger KJ, Carbon, 34(8), 999 (1996) 
Grint A, Perry DL, in 5th Bienn. Conf. on Carbon Ext. Abstracts, 462 (1981)
Kaneko Y, Abe M, Colloids Surf., 37, 211 (1989) 
Arnold EG, Lenore SC, Andrew DE, "Standard Methods," American Health Association, 4-111 (1992)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로