Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
팔라듐촉매를 이용한 수소의 전기화학적 분리
Electrochemical Separation of Hydrogen Using Palladium Catalyst
HWAHAK KONGHAK, April 1999, 37(2), 313-318(6), NONE
Download PDF
Abstract
팔라듐촉매를 이용하여 기체분리용 전극을 제조하고 수소/질소 혼합기체로부터 수소를 전기화학적 막분리법으로 분리하였다. 온도와 압력에 따른 전극의 성능과 분리된 수소의 순도 및 효율 등을 고찰하였고 최적의 운전조건을 결정하였다. 쎌 온도가 상승함에 따라 전극의 성능은 향상되었고 생성된 수소의 순도 및 전력효율은 증가하였다. 압력의 증가는 전극의 성능과 수소의 생성량을 증가시켰지만 질소의 투과량을 증가시켜 수소의 순도를 낮추었다. 분리된 수소의 순도는 80 ℃, 1 atm에서 99.82 %의 최고 순도를 나타내었으며, 전력효율은 전류밀도 300mA/cm2에서 최대값을 가졌다.
Electrodes for gas separation using palladium catalyst were fabricated and hydrogen was separated from hydrogen/nitrogen mixed gas by an electrochemical separation method. The effect of temperature and pressure on the electrode performance, purity and efficiency was investigated, and the optimal operating condition was determined. The increase_x000D_
of cell temperature enhanced the electrode performance, purity of hydrogen and power efficiency. The pressure of feeding gas increased the electrode performance and hydrogen product, but it dropped the purity of hydrogen because of increasing permeation flux of nitrogen. The purity of hydrogen showed the highest value of 99.82 % at 80 ℃ and 1 atm, and the power efficiency was maximum at 300 mA/cm2.
References
Winnick J, Chem. Eng. Prog., 86(1), 41 (1990)
Gerischer H, Tobias CW, "Advances in Electrochemical Science and Engineering," VCH (1990)
Sedlak JM, Austin JF, La Conti AB, Int. J. Hydrog. Energy, 6, 45 (1981)
Zupancic JJ, U.S. Patent, 4,664,761 (1987)
Kunz HR, U.S. Patent, 4,911,803 (1988)
Fujita Y, Nakamura H, Muto T, J. Appl. Chem., 16, 935 (1986)
Eisman GA, J. Power Sources, 29, 389 (1990)
Lemons RA, J. Power Sources, 29, 251 (1990)
Lee SJ, Ph.D. Thesis, Yonsei University, Seoul, Korea (1995)
Pletcher D, Walsh FC, "Industrial Electrochemistry," Chapman and Hall, NY (1990)
Bard AJ, Faulkner LR, "Electrochemical Methods," Wiley, NY (1980)
Scott K, "Electrochemical Reaction Engineering," Academic Press, London (1991)
Sakai T, Takenaka H, Torikai E, J. Electrochem. Soc., 133, 1 (1986)
Sakai T, Takenaka H, Wakabayashi N, Kawami Y, Torikai E, J. Electrochem. Soc., 132, 6 (1986)
Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(1), 105 (1996)
Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(2), 188 (1996)
Gerischer H, Tobias CW, "Advances in Electrochemical Science and Engineering," VCH (1990)
Sedlak JM, Austin JF, La Conti AB, Int. J. Hydrog. Energy, 6, 45 (1981)
Zupancic JJ, U.S. Patent, 4,664,761 (1987)
Kunz HR, U.S. Patent, 4,911,803 (1988)
Fujita Y, Nakamura H, Muto T, J. Appl. Chem., 16, 935 (1986)
Eisman GA, J. Power Sources, 29, 389 (1990)
Lemons RA, J. Power Sources, 29, 251 (1990)
Lee SJ, Ph.D. Thesis, Yonsei University, Seoul, Korea (1995)
Pletcher D, Walsh FC, "Industrial Electrochemistry," Chapman and Hall, NY (1990)
Bard AJ, Faulkner LR, "Electrochemical Methods," Wiley, NY (1980)
Scott K, "Electrochemical Reaction Engineering," Academic Press, London (1991)
Sakai T, Takenaka H, Torikai E, J. Electrochem. Soc., 133, 1 (1986)
Sakai T, Takenaka H, Wakabayashi N, Kawami Y, Torikai E, J. Electrochem. Soc., 132, 6 (1986)
Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(1), 105 (1996)
Lee SJ, Choi KH, Lee TH, Cho WI, Rho YW, Kho YT, HWAHAK KONGHAK, 34(2), 188 (1996)