ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

이산화탄소 분리를 위한 씰린더형 전기화학적 막의 제조 및 분리 특성

Preparation and Separation Characteristics of Cylindrical-shape Electrochemical Membrane for Carbon Dioxide Separation

HWAHAK KONGHAK, June 1999, 37(3), 421-429(9), NONE
downloadDownload PDF

Abstract

다공성 α-alumina 무기막을 메이트뤽스로 이용하여, 씰린더형의 전기 화학적 분리막을 제조하였다. NiO을 음극과 양극으로 이용하였으며 침적법으로 메이트뤽스에 코팅하였다. Li2CO3/K2CO3(=62/38몰비) 혼합물을 전해질로 이용하였으며, 620℃에서 액체로 만든 다음 전극이 코팅된 막과 직접 접촉시켜 함침시켜 주었다. 제조된 막을 620-650℃에서 혼합가스(CO2/O2/N2=0.25/0.16/0.59, 몰비)로부터 이산화탄소를 분리하는데 이용하였으며, 전류밀도에 따른 막의 이산화탄소 투과속도와 전류효율, 양극 쪽에서의 농축정도를 측정하였다. 이산화탄소의 투과속도는 공급해 주는 전류에 비례하여 증가하였으며, 25%의 이산화탄소를 70%로 농축할 수 있었다. 제조된 막의 전류효율은 전류밀도가 증가함에 따라 감소하였다. 제조된 전기화학적 분리막의 기체투과속도 효율은 약 90.3%였다. 본 연구를 통해 씰린더형 전기화학적 막을 이산화탄소의 회수에 적용 가능함을 입증하였다. 그러나 막 분리계 전체에 걸리는 저항값이 높아 앞으로 해결해야 될 문제점으로 남아 있다.
A cylindrical-shape electrochemical separation membrane was prepared using porous α-alumina. The electrodes were coated with NiO on both sides of the cylindrical-shape matrix by a dipping method. A mixture of Li2CO3K2CO3(=62/38 molar ratio) was used as the electrolyte which was heated at 620 ℃ to be liquified and impregnated into the pores of the NiO-coated membrane. The prepared electrochemical membrane, which was operated at 620-650℃, was applied to the separation of CO2 from a gas mixture(CO2/O2N2=0.25/0.16/0.59, molar ratio) and tested the effects of the current density on the permeability and concentration of carbon dioxide in the permeate, and the current efficiency. The permeability of carbon dioxide was increased monotonically with increasing the current density. The carbon dioxide was concentrated from 25 % to 70 % when increasing the current density. The current efficiency was decreased with increasing the current density. The prepared electrochemical membrane had the separation efficiency of 90.3%. In this work, it was proved that the cylindrical-shape electrochemical membrane prepared by using the porous inorganic membrane could be applied to the CO2 separation from a gas mixture. However, the high overall resistance through the EMSD remains as a challenging problem.

References

Sullivan BP, Krist K, Guard HE, "Electrochemical and Electrocatalytic Reactions of Carbon Dioxide," Elsevier (1993)
Yeom BY, Kim M, Lee Y, Park YI, Lee KH, HWAHAK KONGHAK, 36(5), 720 (1998)
Ma MK, Kwon HS, Mah SK, Chung IJ, HWAHAK KONGHAK, 29(5), 557 (1991)
Kim Y, Yeo YK, Lee H, Song HK, Chung Y, Na BK, HWAHAK KONGHAK, 36(4), 562 (1998)
Rho SW, Yoo KP, Oh DG, Lee JS, Son J따, Min BM, HWAHAK KONGHAK, 35(5), 673 (1997)
Wimer JG, Williams MC, Archer DH, Osterle JF, Gas Sep. Purif., 9(2), 121 (1995) 
Winnick J, Chem. Eng. Prog., 41 (1990)
Weaver JL, Winnick J, J. Electrochem. Soc., 130(1), 20 (1983) 
Weaver JL, Winnick J, Electrochemical Sci. Technol., 130(1), 20 (1983)
Kang MP, Winnick J, J. Appl. Electrochem., 15, 431 (1985) 
Wynveen RA, Quattrone PD, ASME Life Support Conference, San Francisco, Calif., July 1971 (1971)
Winnick J, Marshall RD, Schubert FH, Ind. Eng. Chem. Process Des. Dev., 13(1), 59 (1974) 
Lin CH, Winnick J, Ind. Eng. Chem. Process Des. Dev., 13(1), 63 (1974) 
Lin CH, Heinemann ML, Angus RH, Ind. Eng. Chem. Process Des. Dev., 13(3), 261 (1974) 
Abdel-Salam SE, Winnick J, AIChE J., 22(6), 1042 (1976) 
Walke L, Atkinson K, Clark D, Scardaville D, Winnick J, Gas Sep. Purif., 2, 72 (1988) 
Li K, Li N, Sep. Sci. Technol., 28(4), 1085 (1993)
Xiao SQ, Li K, Trans IChemE, 75(A), 438 (1997) 
Lim HS, Winnick J, J. Electrochem. Soc., 562 (1984) 
Lim HS, Winnick J, Electrochemical Sci. Technol., 562 (1984)
Winnick J, Sep. Sci. Technol., 25(13-15), 2057 (1990)
Weaver D, Winnick J, J. Electrochem. Soc., 138(6), 1626 (1991) 
Townley D, Winnick J, Ind. Eng. Chem. Process Des. Dev., 20, 435 (1981) 
Franke M, Winnick J, Ind. Eng. Chem. Res., 28, 1352 (1989) 
Scott K, Winnick J, Gas Sep. Purif., 2, 23 (1988) 
Mchenry DJ, Winnick J, AIChE J., 40(1), 143 (1994) 
Blomen LJM, Mugerwa MN, "Fuel Cell System," Plenum Press, New York (1993)
Lim TH, Lee KS, Nam SW, Oh IH, Hong SA, Lim HC, HWAHAK KONGHAK, 32(3), 498 (1994)
Lee CW, Cho KJ, Hong SA, Lee HY, Kang SG, Hyun SH, "A Development of 2 kw Class Molten Carbonate Fuel Cell System," KIST, Research Report (94/1203-252AG1)
Baumgartner CE, Arendt RH, Lacovangelo CD, Karas BR, J. Electrochem. Soc., 131(10), 2217 (1984) 
Baumgartner CE, Arendt RH, Lacovangelo CD, Karas BR, Electrochemical Sci. Technol., 131(10), 2217 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로