Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
MMA와 FA 공중합체 분리막 제조 및 기체투과 특성
Synthesis of MMA-FA Polymeric Menbrane and its Gas Permeation Properties
HWAHAK KONGHAK, October 1999, 37(5), 628-633(6), NONE
Download PDF
Abstract
Methyl methacrylate(MMA)와 fluoro acrylate(FA)를 공중합하여 제조한 분리막으로 다양한 기체들에 대한 기체투과 실험을 수행하였다. 특히 분리막을 통한 기체투과도에 미치는 불소기의 영향을 FA의 함량을 변화시키면서 조사하였다. FA의 함량이 증가함에 따라 분리막의 표면 자유에너지는 상당히 감소함을 알 수 있었으며, 그 결과로 기체의 투과도와 선택도가 특이한 값을 나타내는데 큰 영향을 미침을 알 수 있었다. P(MMA-FA) 분리막들의 투과도는 H2, CO2, O2, N2, CH4등 다양한 기체들에 대하여 PMMA 분리막에 비하여 2-20배 이상의 값을 나타내었고, 선택도는 PMMA 분리막들과 거의 동등한 값을 유지하였다. FA의 최적 함량은 1-5wt%의 범위인 것을 알 수 있었다.
The gas permeation was experimentally carried out for the various gases with menbranes made out of methyl methacrylate(MMA) and fluoro acrylate(FA) copolymer. Particularly the effect of fluoro functional group on the gas permeability of the membrane was investigated with various FA contents. It turned out that the surface free energy of the membrane was significantly decreased as the FA content increased, resulting in very unique properties with respect to the permeability and the selectivity of gas. P(MMA-FA) membranes showed that its permeability was 2 to 20 times higher than that of the PMMA membrane for the typical gases of H2, CO2, O2, N2 and CH4 while its selectivity was kept to be almost comparable to those of the PMMA membrane. The optimum content of FA was found to be in the range of 1 to 5 wt%.
References
Bunn CW, Howells ER, Nature, 18, 549 (1954)
Min KE, Paul DR, J. Polym. Sci. B: Polym. Phys., 26, 1021 (1988)
Chiou JS, Paul DR, J. Appl. Polym. Sci., 32, 4793 (1986)
Raymond PC, Paul DR, J. Polym. Sci. B: Polym. Phys., 28, 2079 (1990)
Raymond PC, Koros WJ, Paul DR, J. Membr. Sci., 77, 49 (1993)
Chujo Y, Hiraiwa A, Kobayashi H, Yamashita Y, J. Polym. Sci. A: Polym. Chem., 26, 2991 (1988)
Pastemak RA, Christenson MV, Heller J, Macromolecules, 3, 366 (1970)
Min KE, Paul DR, J. Polym. Sci. B: Polym. Phys., 26, 1021 (1988)
Chiou JS, Paul DR, J. Appl. Polym. Sci., 32, 4793 (1986)
Raymond PC, Paul DR, J. Polym. Sci. B: Polym. Phys., 28, 2079 (1990)
Raymond PC, Koros WJ, Paul DR, J. Membr. Sci., 77, 49 (1993)
Chujo Y, Hiraiwa A, Kobayashi H, Yamashita Y, J. Polym. Sci. A: Polym. Chem., 26, 2991 (1988)
Pastemak RA, Christenson MV, Heller J, Macromolecules, 3, 366 (1970)