Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
CFC-113의 이성화 및 수소화에 의한 HCFC-123의 합성
Synthesis of HCFC-123 by Isomerization and Hydrogenation of CFC-113
HWAHAK KONGHAK, October 1999, 37(5), 646-651(6), NONE
Download PDF
Abstract
Mn과 Cr 금속 분말이 첨가된 염화알루미늄 촉매 상에서 CFC-113(CF2Cl-CfCl2)의 이성화 반응을 수행하고 반응 결과 얻어진 CFC-113a(CF3-CCl3)를 활성탄에 담지된 Pt 또는 Pd 촉매 상에서 수소화 하여 HCFC-123(CF3-CCl2H)을 얻었다. 이성화 반응에 있어서는 Cr 또는 Mn의 첨가에 의하여 염화알루미늄 촉매의 수명이 증가하였으며 두 금속을 동시에 첨가했을 때 더욱 증가하였다. CFC-113a의 수소화 반응에서는 활성이나 수율 면에서 Pd/활성탄 보다 Pt/활성탄 촉매가 우수하여 최대 약 95%의 수율이 얻어졌으며 촉매의 활성이 활성탄 종류의 영향을 받는 것을 관찰하였다. 반응온도가 높아짐에 따라 전환율과 HCFC-123의 수율이 상승하여 120oC에서 최대 수율에 도달하나 그 이상의 온도에서는 HCFC-133a(CF3-CClH2)의 생성이 증가하며 수율이 크게 감소하였다.
CFC-113(CF2Cl-CfCl2) was isomerized to CFC-113a(CF3-CCl3) over aluminum chloride catalyst with the addition of manganese and chromium metal powder. Then the product CFC-113a was hydrodehalogenated to HCFC-123(CF3-CCl2H) over Pt or Pd catalysts supported on activated carbon. The life of aluminum chloride catalyst was extended by the addition of manganese and chromium, and a synergic effect was observed when the two were added simultaneously. The conversion of CFC-113a over Pt/carbon catalyst was higher than that over Pd/carbon and reached up to 95%. The activity of the catalyst was found to be dependent on the property of the active carbon support. The conversion and the yield of CFC-123 increased as the reaction temperatues was elevated and reached the maximum at 120oC, However, the yield of HCFC-123 starts decreasing rapidly at the temperature higher than 120oC due to the formation of HCFC-133a(CF3-CClH2).
Keywords
References
Shim GI, Yoon KJ, Kim HS, Park KY, Korean J. Chem. Eng., 12(4), 494 (1995)
Suh DJ, Park TJ, Lee BG, Park KY, Korean J. Chem. Eng., 13(1), 75 (1996)
Kim DW, Ihm SK, Park KY, Lee BG, HWAHAK KONGHAK, 31(6), 831 (1993)
Japan Patetn, 1-156934 (1989)
Japan Patetn, 1-258631 (1989)
Japan Patetn, 1-319440 (1989)
Japan Patetn, 3-223220 (1991)
Miller WT, Fager EW, Griswalt PH, J. Am. Chem. Soc., 72(2), 705 (1950)
U.S. Patent, 4,925,993 (1990)
Japan Patetn, 2-1414 (1990)
Japan Patetn, 58-222038 (1983)
Tomioka S, Mori T, Morikawa Y, Sudo MI, Kawa T, Chem. Lett., 1892 (1991)
Ohnish R, Shokubai, 34(7), 470 (1992)
Suh DJ, Park TJ, Lee BG, Park KY, Korean J. Chem. Eng., 13(1), 75 (1996)
Kim DW, Ihm SK, Park KY, Lee BG, HWAHAK KONGHAK, 31(6), 831 (1993)
Japan Patetn, 1-156934 (1989)
Japan Patetn, 1-258631 (1989)
Japan Patetn, 1-319440 (1989)
Japan Patetn, 3-223220 (1991)
Miller WT, Fager EW, Griswalt PH, J. Am. Chem. Soc., 72(2), 705 (1950)
U.S. Patent, 4,925,993 (1990)
Japan Patetn, 2-1414 (1990)
Japan Patetn, 58-222038 (1983)
Tomioka S, Mori T, Morikawa Y, Sudo MI, Kawa T, Chem. Lett., 1892 (1991)
Ohnish R, Shokubai, 34(7), 470 (1992)