ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

미세조류의 이산화탄소 고정화에 미치는 이산화탄소 농도의 영향

Dependence of Carbon Dioxide Concentration on Microalgal Carbon Dioxide Fixation

HWAHAK KONGHAK, October 1999, 37(5), 800-806(7), NONE
downloadDownload PDF

Abstract

본 연구에서는 미세조류의 광합성능력을 이용하여 이산화탄소를 고정화하고자 할 때 문제점의 하나로 여겨지고 있는 고농도 이산화탄소에 대한 저해현상을 구체적으로 살펴보고자 하였다. 특히 이산화탄소의 전달계수를 구하여 미세조류가 성장하고 있는 동안 배지 내에서 용존 이산화탄소 농도의 변화를 정량적으로 이해하고자 하였으며, 용존 이산화탄소의 농도에 따른 고정화속도의 변화를 수식적으로 표현하였다. 먼저 공급되는 기체 중의 이산화탄소 부분압이 0.035%(v/v)일경우 조류의 성장은 이산화탄소의 전달에 의하여 제한되었으며, 2%(v/v)이상에서는 제한현상은 극복될 수 있었고 용존 이산화탄소는 평형농도 부근에서 유지되었다. 그러나 혼합기체의 이산화탄소 부분압이 10%(v/v) 이상일 경우에는 용존 이산화탄소에 의하여 저해현상이 발견되었다. 이러한 저해현상을 정량적으로 기술하기 위하여 고정화속도를 용존 이산화탄소의 함수로 하는 경헙식을 도입하였으며 이는 광생물반응기의 운전조건에 독립적인 것으로 폭넓은 활용이 가능할 것이다. 또한 고농도 이산화탄소에 의한 저해현상은 가역적임을 실험적으로 입증하였으며 이는 생물학적 이산화탄소 고정화 공정이 단기적인 고농도 이산화탄소에 의한 총격에 유연함을 보여주고 있다. 따라서 본 연구의 결과는 이산화탄소의 전달현상 및 농도에 따른 활성저해 현상을 이해하고 이를 수학적으로 기술함으로써 향후 광생물반응을 모델링하고 운전변수를 최적화하는데 기여할 수 있을 것으로 판단된다.
Batch cultivation of Chlorella vulgaris was carried out under various CO2 concentrations in order to understand and describe mathmatically the CO2 inhibition of microalgal CO2 fixation. The volumetric CO2 transfer coefficient from mixture gas to culture medium was estimated from the volumetric O2 transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO2 was calculated during microalgal culture. When air containing 0.035%(v/v) CO2 was supplied into microalgal culture, the fixation rate was limited by CO2 transfer rate. However, the limitation was disppeared by supplying mixture gas containing above 2%(v/v) CO2 and the dissolved CO2 concentration was maintained at the saturated value. In the range of CO2 partial pressure in the flue gases from thermal power stations and steel-making plants, the microalgal CO2 fixation rate was inhibited. The CO2 fixation rate was succesfully formulated by a new empirical equation as a function of dissolved CO2 concentration, which could be useful for modeling and simulating performance of photobioreaction with enriched CO2. Also, it was found that the CO2 inhibition of microalgal CO2 fixation was reversible and that microalgal CO2 fixation process could be stable against a shock of unusually high CO2 concentration.

References

Schneider SH, Science, 243, 771 (1989) 
Karube T, Takeuchi T, Barnes DJ, Adv. Biochem. Eng. Biotechnol., 46, 63 (1992)
Hall DO, House JI, Energy Conv. Manag., 34, 889 (1993) 
Davison JE, Freund D, A Comparison of Sequestration of CO2 by Forestry and Capture from Power Stations, Presented in the Fourth International Conference on Greenhouse Gas Control Technologies, Switzerland (1998)
Riemer WO, Smith A, "Carbon Dioxide Utilization," IEA Greenhouse Gas R&D Programme, Stoke Orchard, Cheltenham, UK (1995)
Takeuchi T, Utsunomia K, Kobayashi K, Owada M, Karube I, J. Biotechnol., 25, 261 (1992) 
Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I, Phytochemistry, 31, 3345 (1992) 
Kodama M, Ikemoto H, Miyachi S, J. Mar. Biotechnol., 1, 21 (1993)
Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K, J. Ferment. Bioeng., 82(4), 351 (1996) 
Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S, Appl. Biochem. Biotechnol., 39-40, 643 (1993)
Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S, Appl. Biochem. Biotechnol., 45-46, 799 (1994)
Matunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N, Appl. Biochem. Biotechnol., 28-29, 157 (1991)
Takano H, Takeyama H, Nakamura N, Sode K, Burgess JG, Manabe E, Hirano M, Matunaga T, Appl. Biochem. Biotechnol., 34-35, 449 (1992)
Lee JS, Sung KD, Kim MS, Park SC, Lee KW, Preprints of the Division of Fuel Chemistry of the American Chemical Society, 41, 1397 (1996)
Sung KD, Lee JS, Shin CS, Park SC, Renewable Energy, 16, 1019 (1999) 
Yun YS, Park JM, Yang JW, Biotechnol. Tech., 10, 713 (1996)
Yun YS, Park JM, Korean J. Chem. Eng., 14(4), 297 (1997)
Yun YS, Lee SB, Park JM, Lee CI, Yang JW, J. Chem. Technol. Biotechnol., 70, 451 (1997) 
Yun YS, Lim SR, Cho KK, Park JM, Biotechnol. Lett., 19(9), 831 (1997) 
Yun YS, Park JM, Volesky B, Korean J. Biotechnol. Bioeng., 14, 328 (1999)
Starr RC, Zeikus JA, J. Phycol., 29, 1 (1993) 
Vonshak A, "Handbook of Microalgal Mass Culture," Richmond, A. ed., CRC Press, FL, 117 (1986)
Shuler ML, Kargi F, "Bioprocess Engineering: Basic Concepts," Prentice-Hall Inc., Englewood Cliffs, NJ (1992)
Talbot P, Gortares MP, Lencki RW, de la Noue J, Biotechnol. Bioeng., 37, 834 (1991) 
Lee CG, Ph.D. Dissertation, The University of Michigan, Ann. Arbor (1994)
Stumm W, Morgan JJ, "Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters," 3rd ed., John Wiley & Sons, Inc, NY (1996)
Aiba S, Adv. Biochem. Eng., 23, 85 (1982)
Tolbert NE, Preiss J, "Regulation of Atmospheric CO2 and O2 by Photosynthetic Carbon Metabolism," Oxford University Press, UK (1994)
Eriksson M, Karlsson J, Villand P, Ramazanov Z, Gardestrer P, Samuelsson G, "A Mitochondrial Carbonic Anhydrase is Induced by Low CO2," Proceeding of the 7th International Conference on the Cell and Molecular Biology of Chlamydomonas, Regensburg, Germany (1996)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로