ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

확산 화염반응기에 의한 TiO2 초미분체 제조시의 공정변수의 영향

The Effects of Process Variables in Preparing Ultrafine TiO2 Particles by a Diffusion Flame Reactor

HWAHAK KONGHAK, December 1999, 37(6), 821-827(7), NONE
downloadDownload PDF

Abstract

본 연구에서는 확산 화염반응기에 의한 초미립 TiO2 분말 입자 제조공정을 이론적/실험적으로 분석하였다. 모델식에서는 TiCl4 반응물 수지식, 에어로졸 동력학식을 고려하였으며 TiCl4 반응속도, TiO2 입자의 생성 및 충돌현상을 에어로졸 동력학식에 포함시켰다. 반응기 화염온도가 증가 할수록, 초기 TiCl4 농도가 증가할수록 또는 전체 기체유량이 감소할수록 생성된 TiO2입자 크기는 증가하였다. 실험을 통해 제조된 TiO2 분말의 구조는 주로 anatase 형태로 나타났으며 전체기체 유량이 감소하거나 또는 반응기 화염온도가 증가할수록 TiO2 분말내의 rutile 함유량은 증가하였으나, 초기 TiCl4 농도와는 무관하였다. 반응기 최대 화염온도가 감소할수록 TiO2 입자의 비표면적은 증가하였다.
We have studied the process to prepare the ultrafine TiO2 powders by a diffusion flame reactor, theoretically/experimentally. In model equations, the mass balance of TiCl4 and the aerosol dynamic equation were considered. The effects. of TiCl4 chemical reaction, generation and coagulation of TiO2 particles were inclued in the aerosol dynamic equation. The TiO2 particle size increases, as the flame temperature and the inlet TiCl4 concentration increase of as the total gas flow rate decreases. The structure of TiO2 particles in experiments was basically in anafase phase and amount of rutile phase in TiO2 particles incerases as the maximum temperature increases, or as the total gas flow rate decreases. However, the amount of rutile phase in TiO2 particles was almost indepentdent of the inlet TiCl4 concentration. The specific area of TiO2 particles increases, as the flame temperature decreases.

References

Kim KS, 2nd SIChEM Symp. Seoul, Korea, 229 (1990)
Okuyama K, J. Aerosol Sci., Sup., S7 (1991)
Pierson HO, "Handbook of Chemical Vapor Deposition," Noyes Publications (1992)
Hyun BS, Kim KS, HWAHAK KONGHAK, 33(2), 183 (1995)
Sohn HY, Park KH, Lee KI, Chem. Ind. Technol., 7, 336 (1989)
Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829 (1990) 
Suyama Y, Kato A, J. Am. Ceram. Soc., 59, 146 (1976) 
Pratsinis SE, Kim KS, J. Aerosol Sci., 20, 101 (1989) 
Kim KS, Pratsinis SE, AIChE J., 34, 912 (1988) 
Akhtar MK, Xiong Y, Pratsinis SE, AIChE J., 37, 1561 (1991) 
Seinfeld JH, "Atmospheric Chemistry and Physics of Air Pollution," Wiley, New York (1986)
Friedlander SK, "Smoke, Dust and Haze," Wiley, New York (1977)
Hinds WC, "Aerosol Technology," Wiley, New York (1982)
Chae BS, Kim KS, HWAHAK KONGHAK, 37(1), 1 (1999)
Gosman AD, Laubder BE, Reece GJ, "Computer-Aided Engineering Heat Transfer and Fluid Flow," Wiley, New York (1985)
Anderson DA, Tannerhill JC, Pletcher RH, "Computational Fluid Mechanics and Heat Transfer," McGraw-Hill, New York (1984)
Ferzinger JH, "Numerical Methods for Engineering Applications," Wiley, New York (1981)
Fotou GP, Vemury S, Pratsinis SE, Chem. Eng. Sci., 49, 4939 (1994) 
Fotou GP, Pratsinis SE, Baron PA, Chem. Eng. Sci., 49(10), 1651 (1994) 
Zhu WH, Pratsinis SE, AIChE J., 43(11), 2657 (1997) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로