ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Stirred Cell 안에서 BSA의 흡착 과정에 의해 응집된 Microsphere가 투과 Flux에 미치는 영향 고찰

Study on the Permeate Flux in the Filtration of BSA-Adsorbed Microsphere Using Stirred Cell

연세대학교 공과대학 화학공학과, 서울 120-749 1연세대학교 산업기술연구소, 서울 120-749 2생명공학연구소 실용화연구사업단, 대전 305-333
Department of Chemical Engineering, College of Engineering, Yonsei University, Seoul 120-749, Korea 1Engineering Research Institute, Yonsei University, Seoul 120-749, Korea 2Biopilot Plant Division, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
HWAHAK KONGHAK, February 2000, 38(1), 26-31(6), NONE
downloadDownload PDF

Abstract

본 논문은 stirred cell 안에서 BSA가 microsphere에 흡착되는 과정중의 투과 flux의 변화에 관한 연구 결과이다. 모델 단백질로 널리 사용되는 BSA 용액의 농도(0.1, 0.2, 0.4 g/L)와 stirrer speed(300, 400, 600 rpm)를 변수로 하여 실험하였으며, 시간에 따른 투과 flux의 변화를 고찰하였다. 단백질을 투입한 후 시간이 지남에 따라 투과 flux는 증가하다가 다시 감소하는 경향을 보임을 알 수 있었다. Hydrophobic interaction에 의해 BSA가 microsphere에 흡착되며 이 BSA-absorbed microsphere는 흡착이 계속 진행되면서 유효 입자 크기가 커지게 된다. 이러한 이유로 투과 flux는 증가하게 된다. 입자의 크기가 크면 투과 flux가 커진다는 사실은 잘 알려져 있다. BSA에 의해 포화 흡착된 후에는 더 이상 흡착이 진행되지 못하고 BSA는 stirred cell에 장착된 막을 통과하여 빠져 나오게 된다. 이때 BSA가 막 기공 안쪽에 흡착되어 투과 flux는 감소하게 된다. BSA 용액의 농도가 높아지게 되면 포화 흡착이 빨리 일어나기 때문에 투과 flux가 증가하는 부분이 짧아짐을 알 수 있었으며, stirrer speed가 높아질수록 투과 flux는 증가하였다.
A study on permeate flux variation in the filtration of BSA-adsorbed microspheres was performed, to investigate the effects of the stirrer speed (300, 400 and 600 rpm) and the concentration of BSA solutions (0.1, 0.2 and 0.4 g/L). The permeate flux was increased with time until the break point, but decreased after that point. This is in contrast to the observation from the conventional filtration. It could be explained that the mircosphers which were adsorbed by BSA agglutinated each other, and resulted in the increase of effective particle diameter of BSA-adsorbed microsphere. It is well known that the large-size substances make flux increase. When BSA''s were saturated on the surface of microspheres, they permeated through membrane and some of them absorbed inside the pore of membrane, resulting in the flux decline as observed in the general filtration. The period of flux increase was shortened with an increase in the concentration of BSA solution and permeate flux was increased with a increase in the stirrer speed.

References

Yoon JY, Park HY, Kim JH, Kim WS, J. Colloid Interface Sci., 177(2), 613 (1996) 
Yoon JY, Kim JH, Kim WS, Colloids Surf. B: Biointerfaces, 12, 15 (1998) 
Yoon JY, Kim JH, Kim WS, Colloids Surf. A: Physicochem. Eng. Asp., 153, 415 (1999) 
Yoon JY, Lee JH, Kim JH, Kim WS, Colloids Surf. B: Biointerfaces, 10, 365 (1998) 
Lee JH, Yoon JY, Kim WS, Biomed. Chromatogr., 12, 330 (1998) 
Pouliot Y, Wijers MC, Gauthier SF, Nadeau L, J. Membr. Sci., 158(1-2), 105 (1999) 
Ghosh R, Cui ZF, J. Membr. Sci., 139(1), 17 (1998) 
El-Aasser MS, "Advances in Emulsion Polymerization and Latex Technology," (M.S. El-Aasser, Ed.), Vol. II, Lec. 13. Emulsion Polymers Institute(Lehigh Univ.), Bethlehem, PA (1984)
Yang RT, "Gas Separation by Adsorption Process," Butterworths, Stoneham, MA, 33 (1997)
Causserand C, Jover K, Aimar P, Meireles M, J. Membr. Sci., 137(1-2), 31 (1997) 
Clark MM, Flora JR, J. Colloid Interface Sci., 147(2), 407 (1991) 
Bacchin P, Aimar P, Sanchez V, J. Membr. Sci., 115(1), 49 (1996) 
Hong S, Faibish RS, Elimelech M, J. Colloid Interface Sci., 196(2), 267 (1997) 
Causserand C, Jover K, Aimar P, Meireles M, J. Membr. Sci., 137(1-2), 31 (1997) 
Lee Y, Clark MM, J. Membr. Sci., 149(2), 181 (1998) 
Huisman IH, Tragardh G, Tragardh C, Chem. Eng. Sci., 54(2), 281 (1999) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로