Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
역마이셀에 의한 나노미터 크기의 PbS 입자의 합성
Synthesis of Nanocrystalline PbS Particles in Reverse Micelles
성균관대학교 공과대학 화학공학과, 수원 440-746
Department of Chemical Engineering, SungKyunKwan University, Suwon 440-746, Korea
HWAHAK KONGHAK, February 2000, 38(1), 43-46(4), NONE
Download PDF
Abstract
역마이셀을 이용하여 나노미터 크기의 PbS 미립자가 합성되었다. 계면활성제로서 AOT를 사용한 마이크로에멀젼에서 형성된 역마이셀은 혼합되는 물과 AOT의 비에 따라 역마이셀의 크기가 달라지게 되면 이를 이용하여 합성되는 PbS 미립자의 크기가 조절될 수 있도록 하였다. 합성된 PbS 미립자의 크기는 물과 AOT의 비인 w 값을 1에서 8까지 변화시킴에 따라 평균 크기가 약 18Å에서 31Å정도까지 변화될 수 있음을 보였다. 그러나 w 값이 10이상에서는 역마이셀이 안정되지 않아 더욱 큰 크기의 PbS 미립자를 얻을 수 없었다. 형성되는 PbS 미립자의 직경과 w 값은 선형적인 비례관계를 보였으며 그 비례상수는 1.8로 구해졌다.
Nanocrystalline PbS particles were synthesized in reverse micelles. The size of reverse micelles derived from a functional surfactant AOT was controlled by changing the water-surfactant molar ratio(w=[H2O]/[AOT]), and so the PbS synthesis reaction was allowed to occur only in the reverse micelles. The average sizes of PbS nanocrystals were in a range of 18Å-31Å in diameter, when the value of w changed from 1 to 8. At the higher values for w, the reverse micelles were not so stable that it was impossible to obtain the larger PbS nanocrystals controllably. The diameter of PbS nanocrystals was found to show a linear proportionality to the w value, of which the constant was 1.8.
References
Ogawa S, Hu K, Fan FR, Bard AJ, J. Phys. Chem. B, 101(29), 5707 (1997)
Chaudhuri TK, Int. J. Energy Res., 16, 481 (1992)
Nozik AJ, Williams F, Nenadovic MT, Rajh T, Micic OI, J. Phys. Chem., 89, 397 (1985)
Nosaka Y, J. Phys. Chem., 95, 5054 (1991)
Petit C, Pileni MP, J. Phys. Chem., 92, 2282 (1988)
Wang Y, Herron N, J. Phys. Chem., 95, 525 (1991)
Pileni MP, J. Phys. Chem., 97, 6961 (1993)
Petit C, Lixon P, Pileni MP, J. Phys. Chem., 94, 1598 (1990)
Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706 (1993)
Torimoto T, Sakata T, Mori H, Yoneyama H, J. Phys. Chem., 98(11), 3036 (1994)
Wang Y, Suna A, Mahler W, Kasowski R, J. Chem. Phys., 87, 7315 (1987)
Chaudhuri TK, Int. J. Energy Res., 16, 481 (1992)
Nozik AJ, Williams F, Nenadovic MT, Rajh T, Micic OI, J. Phys. Chem., 89, 397 (1985)
Nosaka Y, J. Phys. Chem., 95, 5054 (1991)
Petit C, Pileni MP, J. Phys. Chem., 92, 2282 (1988)
Wang Y, Herron N, J. Phys. Chem., 95, 525 (1991)
Pileni MP, J. Phys. Chem., 97, 6961 (1993)
Petit C, Lixon P, Pileni MP, J. Phys. Chem., 94, 1598 (1990)
Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706 (1993)
Torimoto T, Sakata T, Mori H, Yoneyama H, J. Phys. Chem., 98(11), 3036 (1994)
Wang Y, Suna A, Mahler W, Kasowski R, J. Chem. Phys., 87, 7315 (1987)