ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

초임계 CO2를 Anti-solvent 로 이용한 Benzoic Acid 의 결정화

Crystallization of Benzoic Acid Using Supercritical Carbon Dioxide as Anti-Solvent

울산대학교 공과대학 화학공학부
School of Chemical Engineering, University of Ulsan, Korea
swkim@uou.ulsan.ac.kr
HWAHAK KONGHAK, April 2000, 38(2), 210-218(9), NONE
downloadDownload PDF

Abstract

초임계 CO2를 anti-solvent로 사용하여 유기 화합물의 미세 입자를 제조하고, 여러 가지 실험 변수가 생성된 입자의 크기 및 형태에 미치는 영향을 고찰하였다. 실험의 대상 물질로는 benzoic acid를 선택하였고,고체를 용해시키는 용매로는 methanol을 사용하였다. 초임계유체와 용액을 주입하는 방법에 따라 여러 가지 공저이 존재할 수 있는데 본 연구에서는 (1) 일정한 부피의 용액에 초임계유체를 가하는 방법, (2) 초임계유체에 용액을 가하는 방법, (3) 용액과 초임계유체를 co-current 하게 연속적으로 분사하는 방법과 같은 3가지의 방법을 사용하였으며, 공정의 방법론뿐만 아니라 다향한 실험 변수를 변화시키면서 미세 분말을 제조하고 이들의 영향을 살펴보았다. 실험방법(1)과 같이 일정 부피의 용액에 anti-solvent인 초임계유체를 가하는 경우에 crystallizer 압력, capillary 내경 및 anti-solvent injection 시간을 변화시키면서 실험을 수행하였는데 입자의 크기가 capillary 내경과 anti-solvent injection 시간에는 비례하였으나 crystallizer의 압력이 증가함에 따라서는 입자의 크기가 감소하였다. 실험방법(2)에서는 crystallizer 압력에 따라 입자의 크기가 감소하였으며 crystallizer 온도와 capillary 내경에는 비례함을 확인하였다. Anti-solvent 와 solution을 co-current 하게 분사하는 실험(3)에서는 crystallizer 온도, capillary 내경 및 retention 길이가 증가함에 따라 입자의 크기는 증가한 반면 crystallizer 압력, capillary 길이,용액의 농도 및 CO2 vent rate 에 따라서는 반비례하였으며 다른 방법에 비하여 가장 신뢰도가 큰 것을 알 수있었다. 또한 각 실험방법과 실험변수에 따른 입경 변화에 대한 일반적인 경향을 과포화도와 과포화속도를 사용하여 일관하게 설명이 가능하였다.
The fine particles of organic compound have been prepared using supercritical carbon dioxide as an anti-solvent and the effects of various experimental variables on the particle size and their morphology were also investigated. We selected benzoic acid as a testing material and used methanol to dissolve benzoic acid. It can be said that there are several processes depending on the method to inject supercritical fluid or solution. In this work three different kinds of methods, which are (1) addition of supercritical fluid in the solution of constant volume, (2) method to inject solution into supercritical fluid and (3) continuous co-current spraying of solution and supercritical fluid, have been utilized. And the fine particles have been produced varying processing methods as well as experimental variables and the effects of those on the particle characteristics have been analyzed. In the case of injecting supercritical fluid into the constant-volume solution like method (1) we have performed experiments changing crystallizer pressure, capillary diameter and injection time of anti-solvent. The experiments show that particle size are proportional to the capillary diameter and the anti-solvent injection time, whereas particle sizes decrease with increasing crystallizer pressure. In the experimental method (2) we can get the results such that the particle sizes decrease with increasing crystallizer pressure but increase with increasing crystallizer temperature and capillary diameter. The experimental method (3), which sprays anti-solvent and solution co-currently, is the most reliable method to produce fine particles and the results show that particle sizes increase with increasing crystallizer temperature, capillary diameter and retention length contrary to the opposite behaviors of crystallizer pressure, capillary length, solution concentration and CO2 vent rate. From the data for each experimental methods and conditions we have been able to explain the general behaviors of particles size change by employing supersaturation ratio and supersaturation rate consistently.

References

McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction," Butterworth, Boston (1994)
Johnston KP, Penninger JML, ACS Symp. Ser., 406 (1989)
Matson DW, Petersen RC, Smith RD, J. Mater. Sci., 22, 1919 (1987) 
Mohamed RS, Debenedetti PG, Prud'homme RK, AIChE J., 35, 325 (1989) 
Alessi P, Cortesi A, Kikic I, Foster NR, Macnaughton SJ, Colombo I, Ind. Eng. Chem. Res., 35(12), 4718 (1996) 
Gallagher PM, Coffey MP, Krukonis VJ, Klasutis N, ACS Symp. Ser., 406, 334 (1989)
Dixon DJ, Johnston KP, AIChE J., 37(10), 1441 (1991) 
Dixon DJ, Johnston KP, Bodmeier RA, AIChE J., 39(1), 127 (1993) 
Tom JW, Lim G, Debenedetti PG, Prud'homme RK, ACS Symp. Ser., 514, 238 (1993)
Bleich J, Kleinebudde P, Muller BW, Int. J. Pharm., 106, 77 (1994) 
Schmitt WJ, Salada MC, Shook GG, Speaker SM, AIChE J., 41(11), 2476 (1995) 
Winters MA, Knutson BL, Devenedetti PG, Sparks HG, Przybycien TM, Stevenson CL, Presterlski SJ, J. Pharm. Sci., 85(6), 586 (1996) 
Mullin JW, "Crystallization," 2nd ed., CRC Press (1972)
Kurnik RT, Holla SJ, Reid RC, J. Chem. Eng. Data, 26, 47 (1981) 
Tavana A, Randolph AD, AIChE J., 35(10), 1625 (1989) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로