ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

다성분 분산계 중합반응기에 위한 고충격성 고분자재료의 분산입도분포 모델링 및 예측

Modeling and Prediciton of the Particle Size Distribution of a High-Impact Polymer in the Multicomponent Dispersed Polymerization Reactor

수원대학교 공과대학 고분자공학과, 수원 445-743 1서울대학교 공과대학 응용화학부, 서울 151-742
Department of Polymer Engineering, The University of Suwon, Suwon 445-743, Korea 1School of Chemical Engineering, Seoul National University, Seoul 151-742, Korea
sjlee@mail.suwon.ac.kr
HWAHAK KONGHAK, August 2000, 38(4), 467-473(7), NONE
downloadDownload PDF

Abstract

다성분 분산계 중합반응기로 제조하는 고충격성 고분자재료의 분산입자의 입도분포를 예측하기 위한 유체동력학적 모델링을 수행하였다. 분산계가 겪고 있는 우동영역을 판별한 후, 그 영역에서 적용할 수 있는 분산입자의 분열빈도에 대한 모델을 개발하였다. 반응기 내의 분산입자의 입도분포를 예측하기 위해 본 연구에서 개발한 모델을 기초로 하여 일반화된 입자수 수지식에 적용시켰다. 입도분포에서 나타나는 이분산 분포는 침식에 의한 분열과정을 도입하여 해석할 수 있었다. 입도분포 모델리의 타당성을 분산계 중합반응기로 생산한 제품인 내충격성 폴리스티렌으로 검증한 결과, 분석한 제품의 분산입도분포를 비교적 잘 모사할 수 있었다.
Hydrodynamic modeling was carried out to predict the particle size distribution of high-impact polymers porduced by the multicomponent dispersed polymerization reactor. Mixing flow subranges of the dispersion system were categorized and then a model suitable for the breakage frequency describing theis subrange was developed. The generalized population balance equation was applied to predict the particle size distribution of dispersion system, based on the model developed in this study. It was possible to explain the bimodailty in the particle size distribution by imtroducing the erosive breakage porcess. The agreement between the result of numerical simulation and the expermental data of high-impact polystyene was quite satifactory.

References

Cook DG, Rudin A, Plumtree A, J. Appl. Polym. Sci., 48, 75 (1993) 
Okamoto Y, Miyagi H, Kakugo M, Takahashi K, Macromolecules, 24, 5639 (1991) 
Bucknall CB, "Toughened Plastics," Applied Science Publishers, London (1977)
Shinnar R, Church JM, Ind. Eng. Chem., 52, 253 (1960) 
Lagisetty JS, Das PK, Kumar R, Gandhi KS, Chem. Eng. Sci., 41, 65 (1986) 
Lee JM, Soong Y, Ind. Eng. Chem. Proc. Des. Dev., 24, 118 (1984) 
Arai K, Konno M, Matunaga Y, Saito S, J. Chem. Eng. Jpn., 10, 325 (1977)
Lee SJ, Korean J. Rheol., 10(1), 1 (1998)
Shinnar R, J. Fluid Mech., 10, 259 (1961) 
Kolmogorov AN, Dokl. Akad. Nauk SSSR, 30, 301 (1941)
Calabrese RV, Wang CY, Bryner NP, AIChE J., 32, 677 (1986) 
Bourne JR, Baldyga J, Chem. Eng. Sci., 49(7), 1077 (1994) 
Karam HJ, Bellinger JC, Ind. Eng. Chem. Fundam., 7, 576 (1968) 
Taylor GI, Proc. Roy. Soc., A146, 501 (1934)
Valentas KJ, Bilous O, Amundson NR, Ind. Eng. Chem. Fundam., 5, 271 (1966) 
Valentas KJ, Amundson NR, Ind. Eng. Chem. Fundam., 5, 533 (1966) 
Coulaloglou CA, Tavlarides LL, Chem. Eng. Sci., 32, 1289 (1977) 
Evans HD, Mugele RA, Ind. Eng. Chem., 43, 1317 (1951) 
Park JY, Blair LM, Chem. Eng. Sci., 30, 1057 (1975) 
Kennard EH, "Kinetic Theory of Gases," McGraw-Hill, New York (1938)
Chesters AK, Trans. I. Chem. E., 69, 259 (1991)
Bruijn RA, Chem. Eng. Sci., 48, 277 (1993) 
Chatzi EG, Kiparissides C, Chem. Eng. Sci., 47, 445 (1992) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로