ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

기류 수송계에서 자성 및 비자성 미분체의 연속적 자성분리

Continuous Magnetic Separation of Magnetic and non-Magnetic Fine Powders in a Pneumatic Conveying System

부경대학교 화학공학과, 부산 608-739 1포항산업과학연구원 응용환원 프로젝트팀, 포항 790-330
Department of Chemical Engineering, Pukyong National University, Pusan 608-739, Korea 1Smelting Reduction Project Team, Research Institute of Industrial Science and Technology, Pohang 790-330, Korea
HWAHAK KONGHAK, October 2000, 38(5), 653-660(8), NONE
downloadDownload PDF

Abstract

물질의 자화율 차이를 이용하여 공기 흐름계에서 자성 및 비자성 미분체를 연속적으로 분리하기 위해 하향흐름을 가지는 전자석 분리장치에 대해 연구를 수행하였다. 먼저, 부분적인 유동과 진동을 적용한 미분체 공급장치를 전자석 분리장치에 미분체를 공급하기 위해 개발·적용하였다. 미분체 공급장치의 공급특성을 파악하기 위해 평균입경 52 μm인 미분탄과 입경별로 분급한 석탄을 사용하였다. 부분적인 유동과 진동은 입자상호간의 부착력을 최소화하는데 효과적이었다. 미분체의 배출속도는 부분 유동화 가스유속이 증가함에 따라 입자크기에 대해서 임계유속 이하에서는 완만하게 증가하고, 임계유속 이상에서는 급격하게 증가하였으며, 입자 크기와 진동가속도 그리고 부분 유동화 가스유속이 증가할수록 미분체의 배출속도는 증가하였다. 전자석 분리장치의 분리실험에서 자성 미분체로는 G/D, shot dust를, 비자성 미분체로는 미분탄과 모래를 사용하였다. 하향흐름을 가지는 이중관 분리장치는 공기 흐름계에서 자성 및 비자성 미분체의 연속적인 제거 및 회수에 있어서 효과적이었다. 연속적인 조업에서 전자석 세트의 on/off 시간이 작을수록 내관에서 자석 chains 형성을 최소화할 수 있었다. 자장강도, 내관에서 개구비, 자화율이 증가함에 따라 자성 미분체의 제거율은 증가하였지만, 비자성 미분체의 회수율은 입자 상호간의 부착력으로 인해 감소하였다.
Based on the differences in the magnetic susceptibility of materials, a down-flowing electromagnetic bed were investigated for the separation between magnetic and non-magnetic fine powders in a pneumatic conveying system. A new feeder which utilizes local fluidization and vibration was developed for conveying powders to the electromagnetic bed. The performance of the feeder has been evaluated using pulverized coal of which average diameter is 52μm and sieved coals which were classified by size. Local fluidization and vibration were found to be effective to minimize interparticle adhesion forces. As the gas velocity for local fluidization increased, the discharging rate increased only slightly when the gas velocity is below a critical value with respect to particle size, but increased sharply when it is above the critical value. The discharging rate increased with the increases in particle size, vibrating acceleration and gas velocity for local fluidization. In the test for electromagnetic separation, grinding dust(G/D) and shot dust were used as magnetic fine powders and pulverized coal and sand as non-magnetic ones. Down-flowing annulus separator was found to be effective for continuous removal and recovery of magnetic and non-magnetic fine powders in a pneumatic conveying system. In the continuous operation, the formation of magnetic chains in the core could be minimized by shortening on/off intervals of electromagnetic sets. As the magnetic field intensity, the opening ratio in the core and the magnetic susceptibility increased, the removal efficiency of magnetic fine powders increased while the recovery efficiency of non-magnetic fine powders decreased due to interparticle adhesion forces.

References

Tsouris C, Yiacoumi S, Sep. Sci. Technol., 32(1-4), 599 (1997)
Oberteuffer JA, IEEE Trans. Magn., Mag-10, 223 (1974) 
Oder RR, IEEE Trans. Magn., Mag-12, 428 (1976) 
Kim YH, Suh IK, J. Korean Inst. Resources Recycling, 6, 17 (1997)
Lehner P, Wirth KE, Can. J. Chem. Eng., 77(2), 199 (1999)
Yang YL, Jin Y, Yu ZQ, Bi HT, AIChE Symp. Ser., 296, 81 (1993)
Zhu JX, Wei F, Proc. 8th Int. Conf. on Fluidization, Tours, France, 907 (1995)
Zhang H, Zhu JXJ, Bergougnou MA, Can. J. Chem. Eng., 77(2), 194 (1999)
Wei F, Zhu JX, Chem. Eng. J., 64, 345 (1996)
Zhu JX, Yu ZQ, Jin Y, Grace JR, Issangya A, Can. J. Chem. Eng., 73(5), 662 (1995)
Wang Z, Bai D, Jin Y, Powder Technol., 70, 271 (1992) 
Kim JM, Seader JD, AIChE J., 29, 353 (1983) 
Matsusaka S, Masuda H, Chem. Eng. Jpn., 41, 780 (1996)
Baeyens J, Geldart D, Wu SY, Powder Technol., 71, 71 (1992) 
Wibberley LJ, Phong-Anant, Combust. Sci. Technol., 49, 93 (1986)
Annamalai KM, Ruiz NV, Anand V, Powder Technol., 73, 181 (1992) 
Ijichi K, Uemura Y, Yoshizawa H, Hatate Y, Yoshida K, Kag. Kog. Ronbunshu, 24(3), 365 (1998)
Buchanan JS, Schoennagel HJ, Powder Technol., 78(3), 281 (1994) 
Yeo PM, Kim YH, Theor. Appl. Chem. Eng., 5, 893 (1999)
Svoboda J, "Magnetic Methods for the Treatment of Minerals," ELSEVIER. SCIENCE PUBLISHER B.V. 1 (1987)
Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann, 80 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로