Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
졸-겔법에 의한 구형 mullite 전미분체의 제조 및 mullite화 공정기구의 해석; III. Spinel상의 조성과 구조 및 결정화 공정에 관한 연구
Synthesis of Spherical Pre-mullite Particles by Sol-Gel Method and Mullitization Mechanism of Pre-mullite ; III. Crystal Structure and Composition of Spinel Phase and Mullitization Mechanism
Un-Yeon Hwang†
Jung-Woon Lee
Jin-Hoon Choi
Hyung-Sang Park
Seung-Joon Yoo1
Ho-sung Yoon2
Yong-Ryul Kim3
서강대학교 화학공학과 1서남대학교 화학공학과 2한국자원연구소 자원활용 소재연구부 3대진대학교 화학공학과
Department of Chemical Engineering, Sogang University, Korea 1Faculty of Environmental and Chemical Engineering, Seonam University, Korea 2Division of Mineral Utilization and Materials, Korea Institute of Geology, Mining & Materials, Korea 3Department of Chemical Engineering, Daejin University, Korea
HWAHAK KONGHAK, October 2000, 38(5), 669-675(7), NONE
Download PDF
Abstract
본 연구는 뮬라이트화 공정에서 나타나는 발열 반응의 특성, spinel 상의 조성과 구조, 뮬라이트 전미분체의 뮬라이트화 공정에 대하여 고찰하였다. Mullite 전미분체는 4배위체의 SiO4와 6배위체의 AlO6가 결합하고 있음을 알 수 있었다. 스피넬상의 조성은 2Al2O3·SiO2에 근사함을 알 수 있었고, 4개의 Si4+ 이온과 4개의 Al3+ 이온이 8개의 유효한 4배위체 자리를 차지하고 있으며, 16개의 유효한 6배위체 자리 중 12자리를 Al3+ 이온이 차지하고 있고 나머지 4개의 6배위체 자리는 양이온 결손 결자점으로 존재한다. 따라서 스피넬상의 이온 분포는 □4Alvi12[Al4Si4]ivO32이며, □는 6배위체 자리중 빈 격자점을 나타낸다. 스피넬상을 거친 시료는 1,100 ℃ 부근에서 T-Mullite로 상전이가 일어났으며, 계속하여 하소온도를 증가시키면 1,250 ℃ 부근에서 O-Mullite가 생성되었고, 위와 같은 mullite화 공정에는 Al3+ 이온의 배위체 변화와 비정질 SiO2의 확산에 의한 결정의 조성 변화가 3Al2O3·2SiO2 mullite가 생성될 때까지 계속 일어남을 알 수 있었다.
This study is to clarify the existing outstanding problems concerning (i) the nature of the exothermic reaction, (ii) the structure and composition of the spinel phase, and (iii) the mechanism of mullite formation. The structure of pre-mullite particles could be interpreted to be one where SiO4 tetrahedron and AlO6 octahedron are bonded at random by sharing oxygen atom. The composition of the spinel phase was most likely 2Al2O3·SiO2 and it is regarded that 4 Si4+ and 4 Al3+ occupy the available 8 tetrahedral sites and 12 Al3+ occupy the available 16 octahedral sites leaving 4 octahedral sites being left vacancy. On this basis, the composition of the unit cell of spinel is □4Alvi12[Al4Si4]ivO32, where □ represents a vacancy in the octahedral coordination state. The sample passed through the spinel phase was transformed into the T-Mullite at around 1100 ℃ and transformation of T-Mullite to O-Mullite could take place about 1250 ℃. In the mullitization process as mentioned above, change of coordination number of Al3+ ion and diffusion of SiO2 into the crystal occured continuously with increasing calcination temperature until the 3:2 mullite is formed.
References
Chakraborty AK, Ghosh DK, J. Am. Ceram. Soc., 61, 170 (1978)
Brindley GW, Nakahira M, J. Am. Ceram. Soc., 42, 311 (1959)
Percival AJ, Duncan JF, J. Am. Ceram. Soc., 57, 57 (1974)
Leonard AJ, J. Am. Ceram. Soc., 60, 37 (1977)
Bullens KS, Leonard AJ, Delmon B, J. Am. Ceram. Soc., 61, 81 (1978)
Komarneni S, Roy R, J. Am. Ceram. Soc., 68, C243 (1985)
Mazdiyasni KS, Brown LM, J. Am. Ceram. Soc., 55, 548 (1972)
Kanzaki S, Tabata H, J. Am. Ceram. Soc., 68, C6 (1985)
Hoffman DW, Roy R, Komarneni S, J. Am. Ceram. Soc., 67, 468 (1984)
Burham CW, Carnegie Inst. Wash. Yeard., 223 (1963)
Hwang UY, Lee SG, Koo KK, Park HS, Yoo SJ, Yoon HS, HWAHAK KONGHAK, 37(3), 355 (1999)
Hwang UY, Lee SG, Lee JW, Choi JH, Park HS, Yoo SJ, Yoon HS, HWAHAK KONGHAK, Submitted (2000)
Itatani K, Kubozono T, Howell FS, Kishioka A, Kinoshita M, J. Mater. Sci., 30(5), 1158 (1995)
Schneider H, Sebald LMA, J. Mater. Sci., 27, 805 (1992)
Mackenzie KJD, J. Am. Ceram. Soc., 55, 68 (1972)
Moya JS, Serma CJ, Iglesias JE, J. Mater. Sci., 20, 32 (1985)
Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
Ryskin YI, "The Infrared Spectra of Minerals," Ed., V.C. Farmer, Mineralogical Society Monograph, 4, 146 (1974)
Tarte P, Spectrochim. Acta A, 23, 2127 (1967)
Yamaguchisadorou, Chem. Eng., 17, 1326 (1964)
Freund F, Rer. Deut. Keram. Ges., 44, 392 (1967)
Launer PJ, Am. Mineral., 37, 764 (1952)
Stubican V, Roy R, Am. Mineral., 46, 32 (1961)
Kamiya KK, Sakka S, Mizutani M, Yogyo-Kyokai-Shi, 86, 552 (1978)
Pauling L, "The Nature of the Chemical Bond," 3rd., Cornell University Press, Ithaca, N.Y., 93 (1960)
Yoldas BE, J. Am. Ceram. Soc., 56, 479 (1980)
Cameron WE, Bull. Am. Ceram. Soc., 56, 1003 (1977)
Okada K, Otsaka N, J. Am. Ceram. Soc., C245 (1986)
Okada K, Otsuka N, J. Am. Ceram. Soc., 69, 652 (1986)
Suzuki H, Tomokiyo Y, Suyama Y, Saito H, J. Ceram. Soc. Jpn., 96, 67 (1988)
Wells AF, "Structural Inoganic Chemistry," 5th ed., Oxford, 325 (1984)
Wells AF, "Structural Inoganic Chemistry," 5th ed., Oxford, 594 (1984)
Lide DR, "CRC Handbook of Chemical and Physics," 71st ed., 12-1 (1990)
Pedley JB, MAarshell EM, J. Phys. Chem. Ref. Data., 112, 967 (1984)
Brindley GW, Nakahira M, J. Am. Ceram. Soc., 42, 311 (1959)
Percival AJ, Duncan JF, J. Am. Ceram. Soc., 57, 57 (1974)
Leonard AJ, J. Am. Ceram. Soc., 60, 37 (1977)
Bullens KS, Leonard AJ, Delmon B, J. Am. Ceram. Soc., 61, 81 (1978)
Komarneni S, Roy R, J. Am. Ceram. Soc., 68, C243 (1985)
Mazdiyasni KS, Brown LM, J. Am. Ceram. Soc., 55, 548 (1972)
Kanzaki S, Tabata H, J. Am. Ceram. Soc., 68, C6 (1985)
Hoffman DW, Roy R, Komarneni S, J. Am. Ceram. Soc., 67, 468 (1984)
Burham CW, Carnegie Inst. Wash. Yeard., 223 (1963)
Hwang UY, Lee SG, Koo KK, Park HS, Yoo SJ, Yoon HS, HWAHAK KONGHAK, 37(3), 355 (1999)
Hwang UY, Lee SG, Lee JW, Choi JH, Park HS, Yoo SJ, Yoon HS, HWAHAK KONGHAK, Submitted (2000)
Itatani K, Kubozono T, Howell FS, Kishioka A, Kinoshita M, J. Mater. Sci., 30(5), 1158 (1995)
Schneider H, Sebald LMA, J. Mater. Sci., 27, 805 (1992)
Mackenzie KJD, J. Am. Ceram. Soc., 55, 68 (1972)
Moya JS, Serma CJ, Iglesias JE, J. Mater. Sci., 20, 32 (1985)
Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
Ryskin YI, "The Infrared Spectra of Minerals," Ed., V.C. Farmer, Mineralogical Society Monograph, 4, 146 (1974)
Tarte P, Spectrochim. Acta A, 23, 2127 (1967)
Yamaguchisadorou, Chem. Eng., 17, 1326 (1964)
Freund F, Rer. Deut. Keram. Ges., 44, 392 (1967)
Launer PJ, Am. Mineral., 37, 764 (1952)
Stubican V, Roy R, Am. Mineral., 46, 32 (1961)
Kamiya KK, Sakka S, Mizutani M, Yogyo-Kyokai-Shi, 86, 552 (1978)
Pauling L, "The Nature of the Chemical Bond," 3rd., Cornell University Press, Ithaca, N.Y., 93 (1960)
Yoldas BE, J. Am. Ceram. Soc., 56, 479 (1980)
Cameron WE, Bull. Am. Ceram. Soc., 56, 1003 (1977)
Okada K, Otsaka N, J. Am. Ceram. Soc., C245 (1986)
Okada K, Otsuka N, J. Am. Ceram. Soc., 69, 652 (1986)
Suzuki H, Tomokiyo Y, Suyama Y, Saito H, J. Ceram. Soc. Jpn., 96, 67 (1988)
Wells AF, "Structural Inoganic Chemistry," 5th ed., Oxford, 325 (1984)
Wells AF, "Structural Inoganic Chemistry," 5th ed., Oxford, 594 (1984)
Lide DR, "CRC Handbook of Chemical and Physics," 71st ed., 12-1 (1990)
Pedley JB, MAarshell EM, J. Phys. Chem. Ref. Data., 112, 967 (1984)