Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Si(100) 기판 위에 성장된 3C-SiC(100)의 특성 연구
Characterization of 3C-SiC(100) Grown on Si(100) Substrate
전북대학교 반도체과학기술학과, 전주 561-756 1전북대학교 화학공학부, 전주 561-756 2우석대학교 화학환경화공학부, 원주 561-701
Department of Semiconductor Science &Technology, Chonbuk National University, Chonju 561-756, Korea 1School of Chemical Engineering & Technology, Chonbuk National University, Chonju 561-756, Korea 2Department of Chemical Engineering, WooSuk University, Wanju 561-701, Korea
nahmks@moak.chonbuk.ac.kr
HWAHAK KONGHAK, October 2000, 38(5), 676-682(7), NONE
Download PDF
Abstract
고주파 유도 화학 증착(rf-inductive chemical vapor deposition) 장치를 이용하여 여러 가지 성장 변수(성장 온도, 성장 압력, 반응기체유량, Si/C 조성비 등)에서 Si(100) 기판 위에 입방정계 SiC(3C-SiC) 박막을 성장하였다. 1,170-1,300 ℃의 온도에서 SiC 박막은 Si(100) 기판 방향을 따라 단결정(single crystalline)으로 성장되었다. 또한 3.4-400 torr의 감압에서 성장한 SiC 박막은 성장 압력이 증가함에 따라 성장박막의 두께가 증가하였으며 계면에서 형성되는 보이드(void)의 크기와 밀도가 감소하였다. Si/C의 비를 변화(0.25-0.5)시키면서 Si 기판 위에 SiC 박막을 성장시킨 실험결과로부터, SiC/Si 계면에 생성되는 보이드는 Si 기판으로부터 Si 원자들이 외부로 확산되어 나와 형성됨을 알 수 있었다. 성장 중 박막 내에 생성되는 응력(stress)과 변형(strain)을 적외선 분광법(FT-IR)으로 분석하였으며, SiC/Si 계면에 생성되는 보이드는 Si/C의 비를 변화시킴으로써 제어될 수 있음을 보였다.
Single crystal cubic SiC(100) thin films were grown on Si(100) at various growth conditions in a home made RF-inductive chemical vapor deposition system. The orientation of SiC films grown at the temperature range of 1170-1300 ℃ followed that of Si substrate used in the growth. The increase of the growth pressure (3.4-400 torr) increased the thickness of SiC films, whereas decreased the size and density of voids formed at SiC/Si interface during the growth. From the experiments in the growth of SiC film on Si substrate as a function of Si/C atomic ratio (0.25-0.5), it was found that the out-diffusion of Si atom from Si substrate caused the formation of voids at SiC/Si interface. The stress and strain generated in the grown film were analyzed using a fourier transformation infrared spectroscopy. The formation of voids was suppressed by adjusting Si/C atomic ratios during the growth.
References
Liaw P, Davis RF, J. Electrochem. Soc., 132(3), 642 (1985)
Mehregany M, Zorman CA, Rajan N, Wu CH, Proc. IEEE, 86(8), 1594 (1998)
Zorman CA, Fleischman AJ, Dewa AS, Mehregany M, Jacob C, Nishino S, Pirouz P, J. Appl. Phys., 78, 5136 (1995)
Tobias P, Baranzahi A, Spetz AL, Kordina O, Janzen E, Lundstrom I, IEEE Elec. Dev. Lett., 18, 287 (1997)
Wu CH, Fleischman AJ, Zorman CA, Mehregany M, Mater. Sci. Forum, 264-268, 179 (1998)
Ishida Y, Takahashi T, Okumura H, Yoshida S, Sekigawa T, Mater. Sci. Forum, 264-268, 183 (1998)
Yagi K, Nagasawa H, J. Cryst. Growth, 174, 653 (1997)
Feng ZC, Choyke WJ, Powell JA, J. Appl. Phys., 64(12), 6827 (1988)
Harima H, Nakashma SI, Carulli JM, Beetz CP, Yoo WO, Jpn. J. Appl. Phys., 36, 5525 (1997)
Kim KC, Nahm KS, Suh EK, Hwang YG, J. Cryst. Growth, 197, 841 (1999)
Johnson BC, Meese JM, Zajac GW, Schreiner JO, Kaduk JA, Fleisch TH, Supperlattices Microstructures, 2(3), 223 (1986)
Bullot J, Schmidt MP, Phya. Status Solidi B, 143, 345 (1987)
Zorba T, Siapkas DI, Katsidis CC, Microelectron. Eng., 28, 229 (1995)
Olego D, Cardona M, Phys. Rev., B, Condens. Matter, 25, 3878 (1982)
Sun Y, Miyasato T, Jpn. J. Appl. Phys., 37, 5485 (1998)
Mukaida H, Okumura H, Lee JH, Daimon H, Sakuma E, Endo K, Yoshida S, J. Appl. Phys., 62(1), 254 (1987)
Muench WV, Pettenpaul E, J. Electrochem. Soc., 125, 2 (1978)
Hong LS, Liu ZL, Ind. Eng. Chem. Res., 37(9), 3602 (1998)
Cullity BD, "Elements of X-RAY Diffraction," 2nd., Addison Wesley, New York, NY (1978)
Patterson AL, Phys. Rev., 56, 10 (1939)
Patterson AL, Phys. Rev., second ser., 979 (1939)
Jenkins R, Snyder RL, "Introduction to X-ray Powder Diffractometry," Wiley, New York, NY (1996)
Lee BT, Kim DK, Seo YH, Nahm KS, Lee HJ, Lee KW, Yu KS, Kim Y, Jang SJ, J. Mater. Soc., 14(1), 24 (1999)
Bjorketun LO, Hultman L, Ivanov IP, Wahab Q, Sundgren JE, J. Cryst. Growth, 182, 379 (1997)
Li JP, Steckl AJ, J. Electrochem. Soc., 142(2), 634 (1995)
Mogab J, Leamy HJ, J. Appl. Phys., 45, 1075 (1974)
Hatayama T, Fuyki T, Matsunami H, Jpn. J. Appl. Phys., 34, L1117 (1995)
Kim KC, Nahm KS, Byun HS, J. Vac. Sci. Technol. A, May/June (2000)
Seo YH, Nahm KS, Suh EK, Lee HJ, Hwang YG, J. Vac. Sci. Technol. A, 15(4), 2226 (1997)
Seo YH, Kim KC, Shim HW, Nahm KS, Suh EK, Lee HJ, Kim DK, Lee BT, J. Electrochem. Soc., 145(1), 292 (1998)
Uchida M, Kitabatake M, Thin Solid Films, 335(1-2), 32 (1998)
Cimalla V, Pezoldt J, Mater. Res. Symp. Proc., 355, 33 (1995)
Takahashi K, Nishino S, Saraie J, J. Cryst. Growth, 115, 617 (1995)
Mehregany M, Zorman CA, Rajan N, Wu CH, Proc. IEEE, 86(8), 1594 (1998)
Zorman CA, Fleischman AJ, Dewa AS, Mehregany M, Jacob C, Nishino S, Pirouz P, J. Appl. Phys., 78, 5136 (1995)
Tobias P, Baranzahi A, Spetz AL, Kordina O, Janzen E, Lundstrom I, IEEE Elec. Dev. Lett., 18, 287 (1997)
Wu CH, Fleischman AJ, Zorman CA, Mehregany M, Mater. Sci. Forum, 264-268, 179 (1998)
Ishida Y, Takahashi T, Okumura H, Yoshida S, Sekigawa T, Mater. Sci. Forum, 264-268, 183 (1998)
Yagi K, Nagasawa H, J. Cryst. Growth, 174, 653 (1997)
Feng ZC, Choyke WJ, Powell JA, J. Appl. Phys., 64(12), 6827 (1988)
Harima H, Nakashma SI, Carulli JM, Beetz CP, Yoo WO, Jpn. J. Appl. Phys., 36, 5525 (1997)
Kim KC, Nahm KS, Suh EK, Hwang YG, J. Cryst. Growth, 197, 841 (1999)
Johnson BC, Meese JM, Zajac GW, Schreiner JO, Kaduk JA, Fleisch TH, Supperlattices Microstructures, 2(3), 223 (1986)
Bullot J, Schmidt MP, Phya. Status Solidi B, 143, 345 (1987)
Zorba T, Siapkas DI, Katsidis CC, Microelectron. Eng., 28, 229 (1995)
Olego D, Cardona M, Phys. Rev., B, Condens. Matter, 25, 3878 (1982)
Sun Y, Miyasato T, Jpn. J. Appl. Phys., 37, 5485 (1998)
Mukaida H, Okumura H, Lee JH, Daimon H, Sakuma E, Endo K, Yoshida S, J. Appl. Phys., 62(1), 254 (1987)
Muench WV, Pettenpaul E, J. Electrochem. Soc., 125, 2 (1978)
Hong LS, Liu ZL, Ind. Eng. Chem. Res., 37(9), 3602 (1998)
Cullity BD, "Elements of X-RAY Diffraction," 2nd., Addison Wesley, New York, NY (1978)
Patterson AL, Phys. Rev., 56, 10 (1939)
Patterson AL, Phys. Rev., second ser., 979 (1939)
Jenkins R, Snyder RL, "Introduction to X-ray Powder Diffractometry," Wiley, New York, NY (1996)
Lee BT, Kim DK, Seo YH, Nahm KS, Lee HJ, Lee KW, Yu KS, Kim Y, Jang SJ, J. Mater. Soc., 14(1), 24 (1999)
Bjorketun LO, Hultman L, Ivanov IP, Wahab Q, Sundgren JE, J. Cryst. Growth, 182, 379 (1997)
Li JP, Steckl AJ, J. Electrochem. Soc., 142(2), 634 (1995)
Mogab J, Leamy HJ, J. Appl. Phys., 45, 1075 (1974)
Hatayama T, Fuyki T, Matsunami H, Jpn. J. Appl. Phys., 34, L1117 (1995)
Kim KC, Nahm KS, Byun HS, J. Vac. Sci. Technol. A, May/June (2000)
Seo YH, Nahm KS, Suh EK, Lee HJ, Hwang YG, J. Vac. Sci. Technol. A, 15(4), 2226 (1997)
Seo YH, Kim KC, Shim HW, Nahm KS, Suh EK, Lee HJ, Kim DK, Lee BT, J. Electrochem. Soc., 145(1), 292 (1998)
Uchida M, Kitabatake M, Thin Solid Films, 335(1-2), 32 (1998)
Cimalla V, Pezoldt J, Mater. Res. Symp. Proc., 355, 33 (1995)
Takahashi K, Nishino S, Saraie J, J. Cryst. Growth, 115, 617 (1995)