ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

일라이트와 몬모릴로나이트에 대한 수용액상에서의 유로퓸과 토륨의 흡착특성

Adsorption Characteristics of Eu and Th on Illite and Montmorillonite in Aqueous Solution

한양대학교 화학공학과 1한국원자력연구소
Department of Chemical Engineering, Hanyang University, Korea 1Korea Atomic Energy Research Institute, Korea
munkang@kaeri.re.kr
HWAHAK KONGHAK, October 2000, 38(5), 753-759(7), NONE
downloadDownload PDF

Abstract

점토광물인 일라이트와 몬모릴로나이트에 대한 수용액상에서의 유로퓸과 토륨의 흡착특성을 회분식 실험을 통해서 살펴보았다. 유로퓸의 흡착특성은 pH 6이하에서는 pH변화에 무관하며 Ca2+의 영향을 많이 받아 이온교환 과정으로 해석할 수 있다. 그리고 pH 6과 8사이에서는 흡착량이 급격히 증가하는 pH모서리가 관찰되며 pH 8이상에서는 흡착량이 95%이상이었다. 이는 Eu3+나 유로퓸 탄산착물과 광물과의 표면착물 반응에 의한 것으로 생각된다. 토륨의 흡착특성은 pH 3과 5사이에서 흡착량이 급격히 증가하여 pH 5이상에서는 99%이상의 흡착량을 보였다. 이는 주로 Th4+나 토륨 수산화물의 표면착물 반응에 기인한다. 두 광물에 대한 유로퓸과 토륨의 흡착은 Langmuir 흡착등온선으로 나타낼 수 있었으며 흡착등온선으로부터 구한 최대흡착량은 일라이트의 경우 유로퓸과 토륨이 각각 32와 109 meq/100 g이었고 몬모릴로나이트의 경우 각각 95와 128 meq/100 g이었다. 그리고 MINTEQA2코드로 계산한 수용액상에서의 유로퓸 화학종은 Eu3+, EuOH2+, EuCO3+, Eu(CO3)2-이었고 토륨의 화학종은 Th4+, Th(OH)22+, Th(OH)3+, Th(OH)4이었다.
The adsorption characteristics of europium and thorium on clay minerals such as illite and montmorillonite were investiated by batch experiments. The adsorbed amount of Eu was constant as a function of pH and much affected by a Ca2+ ion at pH below 6. This means the Eu adsorption at low pH is described by ion-exchange reaction. The adsorbed amount was increased rapidly in the range of pH 6-8, which corresponds to pH edge. The adsorbed Eu was more than 95% of total Eu at pH above 8. The Eu adsorption at high pH is caused by the surface complexation reaction between Eu3+ or europium carbonates and minerals. The adsorbed amount of Th was sharply increased in the range of pH 3-5. Th adsorbed Th was more than 99% of total Th at pH above 5. The Th adsorption is mainly due to the surface complexation of Th4+ or thorium hydroxides. The adsorption characteristics of Eu and Th on illite and montmorillonite is represented by Langmuir adsorption isotherm. The maximum adsorbed amount of Eu and Th on illite, resulted from adsorption isotherm, is 32 and 109 meq/100 g, respectively. The maximum amount of Eu and Th on montmorillonite is 95 and 128 meq/100 g, respectively. The Eu-species calculated by MINTEQA2 are Eu3+, EuOH2+, EuCO3+ and Eu(CO3)2-. The Th exists in the species of Th4+, Th(OH)22+, Th(OH)3+ and Th(OH)4 in the aqueous phase.

References

Lieser KH, Radiochim. Acta, 70-71, 355 (1995)
Silva RJ, Nitsche H, Radiochim. Acta, 70-71, 377 (1995)
Jung J, Cho YH, Hahn P, Bull. Korean Chem. Soc., 19(3), 324 (1998)
Park CK, Hahn PS, HWAHAK KONGHAK, 35(4), 463 (1997)
Sposito G, "The Chemistry of Soils," Oxford Univ. Press (1989)
vanOlphen H, "An Introduction to Clay Colloid Chemistry; Chap. 5 Clay Mineralogy," John Wiley & Sons (1977)
Stumn W, "Chemistry of the Solid-Water Interface," John Wiley & Sons (1992)
Wang L, Maes A, Canniere PD, Lee J, Radiochim. Acta, 82, 233 (1998)
Turner GD, Zachara JM, Mckinley JP, Smith SC, Geochim. Cosmochim. Acta, 60(18), 3399 (1996) 
Hower J, Mowatt TC, Am. Mineral., 51, 825 (1966)
Grim RE, Kulbicki G, Am. Mineral., 46, 1328 (1961)
Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F, Geochim. Cosmochim. Acta, 63(6), 815 (1999) 
Ledin A, Karlsson S, Duker A, Allard B, Radiochim. Acta, 66-67, 213 (1994)
Allison JV, Brown DS, Nove-Gradac KJ, "MINTEQA2/PRODEFA2, A geological assessment model for environmental systems, version 3.0," U.S. EPA (1991)
Spahiu K, Bruno J, SKB TR 95-35 (1995)
Stumm W, "Aquatic Surface Chemistry; Part 1 The Solid-Solution Interface," John Wiley & Sons (1987)
Beene GM, Bryant R, Williams DJA, J. Colloid Interface Sci., 147(2), 358 (1991) 
Stadler M, Schindler PW, Clays Clay Miner., 41(3), 288 (1993) 
Hyun SP, Cho YH, Kim SJ, Hahn PS, J. Colloid Interface Sci., 222(2), 254 (2000) 
Runde W, Meinrath G, Kim JI, Radiochim. Acta, 58-59, 93 (1992)
Rizkalla EN, Choppin GR, Handbook on the Physics and Chemistry of Rare Earths; Vol. 15, Gshneidner, K.A. Jr., Eyring, L., Eds., Elsevier, New York (1991)
Dzombak DA, Morel FMM, "Surface Complexation Modeling: Hydrous Ferric Oxide," John Wiley & Sons (1990)
Stumm W, Morgan JJ, "Aquatic Chemistry; Chemical Equilibria and Rates in Natural Waters," John Wiley & Sons (1996)
Cromieres L, Moulin V, Fourest B, Guillaumont R, Giffaunt E, Radiochim. Acta, 82, 249 (1998)
Hunter KA, Hawke DJ, Choo LK, Geochim. Cosmochim. Acta, 52, 627 (1988) 
Osthols E, Bruno J, Grenthe I, Geochim. Cosmochim. Acta, 58(2), 613 (1994) 
Grenthe I, Lagerman B, Acta Chem. Scand., 45, 231 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로