ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

SiH4 플라즈마 반응기에서 플라즈마 화학과 결합된 입자 거동 분석

Analysis on Particle Movements Combined with the Plasma Chemistry in SiH4 Plasma Reactor

강원대학교 공과대학 화학공학과, 춘천
Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon-Do, Korea
HWAHAK KONGHAK, December 2000, 38(6), 869-876(8), NONE
downloadDownload PDF

Abstract

본 연구에서는 플라즈마 화학 기상 증착(PCVD: Plasma Chemical Vapor Deposition)을 이용한 반도체 제조 공정 중에 생성되는 화학종들 및 입자들의 농도 분포를 공정변수 변화에 따라 모델식을 사용하여 고찰하였다. 화학종들에 대한 물질 수지식에는 플라즈마 화학반응, 유체대류, 확산 및 전기적 이동 등의 영향을 고려하였으며, 입자 거동에 대한 모델식에는 유체대류, 입자확산, 외부힘(이온항력, 정전기력, 중력) 등의 영향을 고려하였다. SiHx+ 이온의 농도는 날카로운 최고점을 보이며 두 sheath 영역에서 0에 접근하였다. 두 sheath 영역에서 음이온의 농도는 0에 접근하였고, 대부분의 음이온들은 벌크 플라즈마 영역에 존재하였다. 유체대류의 영향으로 하류 sheath 근처에서의 음이온 농도가 상류 sheath 근처에서보다 높게 나타났다. 대부분의 입자들은 전기적인 반발력과 이온항력이 균형을 이루고 있는 두 sheath 경계 영역에 분포하여 두 sheath 영역과 벌크 플라즈마 영역에서의 입자 농도는 각각 0에 접근하였다. 유체대류의 영향으로 하류 sheath 경계 영역에서의 입자 농도가 상류 sheath 경계 영역에서 보다 높게 나타났다. 입자 크기가 0.1㎛에서 10㎛으로 증가함에 따라 유체대류의 영향에 의해 대부분의 입자들이 하류 sheath 경계 영역에 위치하였다. 양이온과 음이온의 거동은 SiH4 PCVD에서 이온 항력이 입자 거동에 미치는 영향을 계산하는데 중요하게 작용하였다.
The distributions of chemical species and particles inside a silane plasma chemical vapor deposition (PCVD) reactor were theoretically investigated under various plasma conditions. We included the effects of chemical reactions, fluid convection, diffusion and electrical migration on the governing equations of chemical species. The effects of fluid convection, particle diffusion and external forces (ion drag, electrostatic and gravitational forces) on the movement of particles inside the plasma reactor were also examined. The SiH(x)(+) concentration profiles showed sharp peaks at the reactor center, but almost zero in the sheath regions. The concentrations of negative ions in the sheath region became almost zero and most of them were contained inside the bulk plasma. The concentrations of negative ions at the downstream sheath boundary were higher than those at the upstream sheath boundary due to the effect of fluid convection. Most of those particles were located in the region near the sheath boundaries by the balance between the ion drag and electrostatic forces, but the particle concentrations in the sheath region and in the bulk plasma were almost zero. The particle concentrations were greater at the downstream sheath boundary than at the upstream sheath boundary by the effect of fluid convection. As the particle size increased from 0.1 to 10 μm, most particles were located at the downstream sheath boundary by the effect of fluid convection. It was found that the movements of negative ions as well as the positive ions were also important for determining the ion drag force acting on particles in silane PCVD.

References

Watanabe Y, Shiratani M, Fukuzawa T, Kawasaki H, Ueda Y, Singh S, Ohkura H, J. Vac. Sci. Technol. A, 14(3), 995 (1996) 
Watanabe Y, J. Appl. Phys., 79(1), 104 (1996) 
Selwyn GS, Semicond. Int., 72 (1993)
Selwyn GS, Patterson EF, J. Vac. Sci. Technol. A, 10, 1053 (1992) 
Howling AA, Sansonnens L, Dorier JL, Hollenstein C, J. Phys. D: Appl. Phys., 26, 1003 (1993) 
Howling AA, Sansonnens L, Dorier JL, Hollenstein C, J. Appl. Phys., 75, 1340 (1994) 
Kushner MJ, J. Appl. Phys., 62(12), 4763 (1987) 
Kushner MJ, J. Appl. Phys., 63, 2532 (1988) 
Kushner MJ, J. Appl. Phys., 71(9), 4173 (1992) 
Graves DB, Jensen KF, Plasma IEEE Trans. Plasma Sci., 62(1), 88 (1987)
Graves DB, Daugherty JE, Kilgore MD, Porteous RK, Plasma Sources Sci. Technol., 3, 433 (1994) 
Goree J, Plasma Sources Sci. Technol., 3, 400 (1994) 
Bouchoule A, Plain A, Boufendi L, Blondeau J, Laure C, J. Appl. Phys., 70, 1991 (1991) 
Tachibana K, Hayashi Y, Okuya T, Tatsuta T, Plasma Sources Sci. Technol., 3, 314 (1994) 
Garrity MP, Peterson TW, J. Vac. Sci. Technol. A, 13(6), 2939 (1995) 
Fukuzawa T, Obata K, Kawasaki H, Shiratani M, Watanabe Y, J. Appl. Phys., 80(6), 1 (1996)
Kim KS, Ikegawa M, Plasma Sources Sci. Technol., 5, 311 (1996) 
Daugherty JE, Porteous RK, Kilgore MD, Graves DB, J. Appl. Phys., 72, 3934 (1992) 
Doughty DA, Gallagher A, J. Appl. Phys., 67, 139 (1989) 
Hollenstein C, Dorier JL, Dutta J, Sansonnens L, Howling AA, Plasma Sources Sci. Technol., 3, 278 (1994) 
Kilgore MD, Daugherty JE, Porteous RK, Graves DB, J. Appl. Phys., 73(11), 7195 (1993) 
Matsuda A, Tanaka K, J. Appl. Phys., 60, 2351 (1986) 
Scott BA, Reimer JA, Longeway PA, J. Appl. Phys., 54, 6853 (1983) 
Weakliem HA, Estes RD, Longeway PA, J. Vac. Sci. Technol. A, 5, 29 (1987) 
Chen FF, "Introduction to Plasma Physics and Controlled Fusion," 2nd edn, Plenum, New York (1984)
Reid RC, Prausnitz JH, Sherwood TK, "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York (1977)
Chapman B, "Glow Discharge Process: Sputtering and Plasma Etching," Wiley, New York (1980)
Sato N, Tagashira H, IEEE Trans. Plasma Sci., 19(2), 102 (1991) 
Friedlander SK, "Smoke, Dust and Haze: Fundamentals of Aerosol Behavior," Wiley, New York (1977)
Schweigert VA, Schweigert IA, J. Phys. D: Appl. Phys., 29, 655 (1996) 
Nowlin RN, Carlile RN, J. Vac. Sci. Technol. A, 9, 2825 (1991) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로