Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
RF Low Energy Plasma Beam에 의한 다이아몬드 특성을 갖는 탄소 박막의 증착
Deposition of Diamond-like Carbon Thin Film by RF Low Energy Plasma Beam
공주대학교 공과대학 화학공학부, 충남 314-701
School of Chemical Engineering, Kongju National University, 182 Shinkwandong, Kongju, Chungnam 314-701, Korea
dskim@knu.kongju.ac.kr
HWAHAK KONGHAK, February 2001, 39(1), 85-90(6), NONE
Download PDF
Abstract
기판에 입사하는 이온 에너지 및 flux의 제어가 가능한 플라즈마 공정에 의거한 RF ion source를 이용하여 상온에서 기판에 직류자체 부전압을 인가하지 않고 다이아몬드 특성을 갖는 탄소 박막을 증착하였다. 이는 CH4과 H2 가스를 이용하여 기판에 충돌하는 이온 에너지 및 flux를 제어하기 위해 이온 가속망에 인가된 RF 전력에 의한 직류자체 부전압(DC Self Bias Voltage)을 변화시키면서 행하였으며, 증착된 박막의 구조 및 광학적 특성은 Ellipsometer, UV-VIS Spectrometer, Raman spectroscopy 등을 이용하여 분석하였다. 이온 가속망에 인가한 직류자체 부전압이 -50V에서 -300V로 증가함에 따라 굴절률 상수는 1.89에서 2.35로 증가하였고, -100V에서 -300V로 증가함에 따라 광학적 띠갭은 2.35에서 1.35로 감소하였으며, ID/IG의 비는 0.79에서 4.48로 증가하였다. 이런 결과로부터, 낮은 RF 전력 인가로 인한 직류자체 부전압을 가하면 고분자 특성을 갖는 탄소 박막이 증착되어 지고 높은 직류자체 부전압을 가하면 증착된 박막은 흑연화(graphite)한 탄소박막이 증착됨을 알 수 있었다.
The diamond-like carbon thin films were deposited by RF ion source which can control ion energy and flux incident on the substrate without applying substrate bias voltage at room temperature. The film depositions are performed using a mixture of methane and hydrogen and changing the DC self bias voltage via RF power applied to ion accelerating grid electrode in order to control the energy and flux of ions bombarding the substrate. The structure and optical properties of the films are evaluated by ellipsometer, UV-VIS spectrometer, and Raman spectroscopy. The refractive index of the deposited films increases from 1.89 to 2.35 as DC self bias voltage is increased from -50V to -300V. The optical bandgap decreases from 2.35 to 1.35 and the ratio of ID/IG obtained from Raman spectroscopy increases from 0.79 to 4.48, respectively, with increasing DC self bias voltage from -100V to -300V. From this results it is concluded that at low DC self bias voltage(<-50V), soft, polymer-like films are formed while at moderately high DC self bias voltage (-100V to -200V), diamond-like carbon(DLC) films are formed, and at high DC self bias voltage (>-300V), graphite-like carbon films are formed due to high ion bombardment.
References
Robertson J, Prog. Solid St. Chem., 21, 199 (1991)
Tsai H, Bogy DB, J. Vac. Sci. Technol. A, A5(6), 3287 (1987)
Muller DE, Li E, Veerasamy VS, Birkmeyer J, Ward J, Weiss J, Thin Solid Films, 286(1-2), 59 (1996)
Andre B, Rossi F, Dunlop H, Diamond Related Materials, 1, 307 (1992)
Enisherlova KL, Yu AK, Chervyakova EN, Mitrofanov EA, Yu PM, Mater. Sci. Eng., B46, 137 (1996)
Scheibe HJ, Schultrich B, Thin Solid Films, 246(1-2), 92 (1994)
Lee JH, Kim DS, Lee YH, Farouk B, J. Electrochem. Soc., 143(4), 1451 (1996)
Koidl P, Wild C, Dischler B, Wagner J, Ramsteiner M, Mater. Sci. Forum, 52-53, 41 (1989)
Nagai I, Ishitani A, Kuroda H, Yoshikawa M, Nagai N, J. Appl. Phys., 67(6), 2890 (1990)
Rusli, Yoon SF, Yang H, Zhang Q, Ahn J, Fu YL, J. Vac. Sci. Technol. A, 16(2), 572 (1998)
Angus JC, Thin Solid Films, 216, 126 (1992)
Martinu L, Klembergsapieha JE, Kuttel OM, Raveh A, Wertheimer MR, J. Vac. Sci. Technol. A, 12(4), 1360 (1994)
Lee JH, Kim DS, Lee YH, Farouk B, J. Mater. Sci. Lett., 14(16), 1132 (1995)
Lee JH, Kim DS, Lee YH, Farouk B, Thin Solid Films, 280(1-2), 204 (1996)
Wu WJ, Hon MH, Thin Solid Films, 307(1-2), 1 (1997)
Dorfman VF, Thin Solid Films, 212, 267 (1992)
Grill A, Patel V, Jahnes C, J. Electrochem. Soc., 145(5), 1649 (1998)
Endo K, Tatsumi T, Matsubara Y, Horiuchi T, Jpn. J. Appl. Phys., 37(4A), 1809 (1998)
Kim DS, Lee YH, Park NK, Appl. Phys. Lett., 69(18), 2776 (1996)
Lieberman MA, Lichtenberg AJ, "Principles of Plasma Discharges and Materials Processing," Chap. 12 (1994)
Donnelly K, Dowling DP, Davitt E, O'Brien TP, Kelly TC, "Proceedings in Materials Processing Technologies '93," ed. by Hashmi, M.S.J., 769 (1993)
Tauc J, "Amorphous and Liquid Semiconductors," Chap. 6, Plenum, London (1976)
Robertson J, O'Reilly EP, Phys. Rev., B, Condens. Matter, B35, 2946 (1987)
Dillon RO, Woollam JA, Katkanant V, Phys. Rev., B, Condens. Matter, B29, 3482 (1984)
Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
Nemanich RJ, Glass JT, Lucovsky G, Shroder RE, J. Vac. Sci. Technol. A, 6, 1783 (1988)
Gonzales-Hernandez J, Chao BS, Pawlik DA, J. Vac. Sci. Technol. A, 7, 2332 (1989)
Ager JW, Anders A, Brown IG, Appl. Phys. Lett., 66, 3444 (1995)
Chhowalla M, Ferrari AC, Robertson J, Amaratunga AJ, Appl. Phys. Lett., 76, 1419 (2000)
Hallil A, Despax B, Thin Solid Films, 358(1-2), 30 (2000)
Tsai H, Bogy DB, J. Vac. Sci. Technol. A, A5(6), 3287 (1987)
Muller DE, Li E, Veerasamy VS, Birkmeyer J, Ward J, Weiss J, Thin Solid Films, 286(1-2), 59 (1996)
Andre B, Rossi F, Dunlop H, Diamond Related Materials, 1, 307 (1992)
Enisherlova KL, Yu AK, Chervyakova EN, Mitrofanov EA, Yu PM, Mater. Sci. Eng., B46, 137 (1996)
Scheibe HJ, Schultrich B, Thin Solid Films, 246(1-2), 92 (1994)
Lee JH, Kim DS, Lee YH, Farouk B, J. Electrochem. Soc., 143(4), 1451 (1996)
Koidl P, Wild C, Dischler B, Wagner J, Ramsteiner M, Mater. Sci. Forum, 52-53, 41 (1989)
Nagai I, Ishitani A, Kuroda H, Yoshikawa M, Nagai N, J. Appl. Phys., 67(6), 2890 (1990)
Rusli, Yoon SF, Yang H, Zhang Q, Ahn J, Fu YL, J. Vac. Sci. Technol. A, 16(2), 572 (1998)
Angus JC, Thin Solid Films, 216, 126 (1992)
Martinu L, Klembergsapieha JE, Kuttel OM, Raveh A, Wertheimer MR, J. Vac. Sci. Technol. A, 12(4), 1360 (1994)
Lee JH, Kim DS, Lee YH, Farouk B, J. Mater. Sci. Lett., 14(16), 1132 (1995)
Lee JH, Kim DS, Lee YH, Farouk B, Thin Solid Films, 280(1-2), 204 (1996)
Wu WJ, Hon MH, Thin Solid Films, 307(1-2), 1 (1997)
Dorfman VF, Thin Solid Films, 212, 267 (1992)
Grill A, Patel V, Jahnes C, J. Electrochem. Soc., 145(5), 1649 (1998)
Endo K, Tatsumi T, Matsubara Y, Horiuchi T, Jpn. J. Appl. Phys., 37(4A), 1809 (1998)
Kim DS, Lee YH, Park NK, Appl. Phys. Lett., 69(18), 2776 (1996)
Lieberman MA, Lichtenberg AJ, "Principles of Plasma Discharges and Materials Processing," Chap. 12 (1994)
Donnelly K, Dowling DP, Davitt E, O'Brien TP, Kelly TC, "Proceedings in Materials Processing Technologies '93," ed. by Hashmi, M.S.J., 769 (1993)
Tauc J, "Amorphous and Liquid Semiconductors," Chap. 6, Plenum, London (1976)
Robertson J, O'Reilly EP, Phys. Rev., B, Condens. Matter, B35, 2946 (1987)
Dillon RO, Woollam JA, Katkanant V, Phys. Rev., B, Condens. Matter, B29, 3482 (1984)
Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
Nemanich RJ, Glass JT, Lucovsky G, Shroder RE, J. Vac. Sci. Technol. A, 6, 1783 (1988)
Gonzales-Hernandez J, Chao BS, Pawlik DA, J. Vac. Sci. Technol. A, 7, 2332 (1989)
Ager JW, Anders A, Brown IG, Appl. Phys. Lett., 66, 3444 (1995)
Chhowalla M, Ferrari AC, Robertson J, Amaratunga AJ, Appl. Phys. Lett., 76, 1419 (2000)
Hallil A, Despax B, Thin Solid Films, 358(1-2), 30 (2000)