Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
산처리한 천연 제올라이트 촉매에서 HDPE의 액상 분해반응
Liquid-Phase Degradation of HDPE over Acid-Treated Natural Zeolite Catalysts
전남대학교 공과대학 공업화학과, 광주 500-757
Department of Chemical Technology and The Institute for Catalysis Research, Chonnam National University, Kwangju 500-757, Korea
gseo@chonnam.ac.kr
HWAHAK KONGHAK, April 2001, 39(2), 157-162(6), NONE
Download PDF
Abstract
모더나이트가 주성분인 국산 천연 제올라이트를 산처리하여 세공구조와 산성도 및 HDPE의 액상 분해반응에서 촉매 활성을 조사하였다. 천연 제올라이트 자체의 활성은 매우 낮으나, 산처리하면 불순물이 제거되고 메조세공이 많아져 촉매 활성이 크게 높아진다. 그러나 산처리 농도가 너무 높으면 메조세공이 부서지고 외표면 산점이 줄어들어 도리어 활성이 낮아져, 이 실험에서는 1.0N 염산으로 처리하여 제조한 촉매에서 활성이 가장 높았다. 활성은 우수하나 고가인 베타 제올라이트와 산처리한 천연 제올라이트를 혼합하여 사용하면 적은 양의 베타 제올라이트로도 높은 HDPE의 분해 전환율을 얻을 수 있었다.
Pore structure and acidity of acid-treated domestic natural zeolite, whose major component was mordenite, were investigated as well as their catalytic activity in the liquid-phase degradation of HDPE. Although the catalytic activity of original natural zeolite was extremely low, those of acid-treated natural zeolites were considerably high due to removal of impurities and development of mesopores. However, acid treatment of a high concentration HCl such as 4.0 N caused destruction of mesopore and elimination of acid sites on the external surface, resulting in lower activity. The acid-treated natural zeolite with 1.0 N HCl showed the highest activity in this study. The mixed catalysts composed of the acid-treated natural zeolite and BEA zeolite were effective to obtain high conversions of HDPE with small loadings of BEA zeolite that had a high activity but was expensive.
Keywords
References
Petrochemical Korea 2000, Korea Petrochemical Ind. Association, 38 (2000)
Williams EA, Williams PT, J. Anal. Appl. Pyrolysis, 40, 347 (1997)
Bockhorn H, Hornung A, Hornung U, Schawaller D, J. Anal. Appl. Pyrolysis, 48, 93 (1999)
Tachibana T, U.S. Patent, 5,738,025 (1995)
Shim JS, Kim KB, Kim JH, Seo G, HWAHAK KONGHAK, 36(3), 447 (1998)
Shim JS, You YS, Kim JH, Seo G, Stud. Surf. Sci. Catal., 82, 465 (1998)
You YS, Shim JS, Kim JH, Seo G, Catal. Lett., 59(2-4), 221 (1999)
You YS, Kim JH, Seo G, Polym. Degrad. Stabil., 70, 365 (2000)
Mordi RC, Fields R, Dwyer J, J. Anal. Appl. Pyrolysis, 29, 45 (1994)
Ha BH, HWAHAK KONGHAK, 16(2), 71 (1978)
Chon H, Seo G, J. Korean Chem. Soc., 20, 469 (1976)
Chung CS, Seo G, Chon H, Kim HG, J. Korean Chem. Soc., 21, 204 (1977)
Seo G, Kim MW, Kim JH, Ahn BJ, Hong SB, Uh YS, Catal. Lett., 55(2), 105 (1998)
Katada N, Igi H, Kim JH, Niwa M, J. Phys. Chem. B, 101(31), 5969 (1997)
Williams EA, Williams PT, J. Anal. Appl. Pyrolysis, 40, 347 (1997)
Bockhorn H, Hornung A, Hornung U, Schawaller D, J. Anal. Appl. Pyrolysis, 48, 93 (1999)
Tachibana T, U.S. Patent, 5,738,025 (1995)
Shim JS, Kim KB, Kim JH, Seo G, HWAHAK KONGHAK, 36(3), 447 (1998)
Shim JS, You YS, Kim JH, Seo G, Stud. Surf. Sci. Catal., 82, 465 (1998)
You YS, Shim JS, Kim JH, Seo G, Catal. Lett., 59(2-4), 221 (1999)
You YS, Kim JH, Seo G, Polym. Degrad. Stabil., 70, 365 (2000)
Mordi RC, Fields R, Dwyer J, J. Anal. Appl. Pyrolysis, 29, 45 (1994)
Ha BH, HWAHAK KONGHAK, 16(2), 71 (1978)
Chon H, Seo G, J. Korean Chem. Soc., 20, 469 (1976)
Chung CS, Seo G, Chon H, Kim HG, J. Korean Chem. Soc., 21, 204 (1977)
Seo G, Kim MW, Kim JH, Ahn BJ, Hong SB, Uh YS, Catal. Lett., 55(2), 105 (1998)
Katada N, Igi H, Kim JH, Niwa M, J. Phys. Chem. B, 101(31), 5969 (1997)