ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

연속식 장치를 이용한 아임계 및 초임계수하에서의 Cellulose 가수분해 특성

Hydrolysis of Cellulose under Subcritical and Supercritical Water Using Continuous Flow System

한국에너지기술연구원 에너지환경연구부, 대전 305-343 1경북대학교 화학공학과, 대전 702-701
Energy and Environment Research Department, Korea Institute of Energy Research, Taejeon 305-343, Korea 1Department of Chemical Engineering, Kyungpook National University, Taegu 702-701, Korea
sdopark@kier.re.kr
HWAHAK KONGHAK, April 2001, 39(2), 257-263(7), NONE
downloadDownload PDF

Abstract

바이오매스 물질의 주성분인 cellulose의 분해 반응특성을 규명하기 위해 반응조건을 아임계 및 초임계수 영역으로 구분하여 반응속도 변화 및 생성물의 수율 변화에 관해 고찰하였다. 실험은 시료인 cellulose 슬러리를 연속적으로 공급할 수 있는 고압용 슬러리 펌프를 사용하여 온도 330-400 ℃, 압력 24-40 MPa, 체류시간 0.016-3.5 sec의 범위에서 연속식 장치로 수행되었다. Cellulose 분해반응속도는 아임계 영역에서는 압력의 영향없이 온도 증가에 따라 반응속도상수(k)가 선형적으로 증가함을 볼 수 있으나, 초임계 영역에서는 압력이 40 MPa인 경우 속도 상수가 거의 선형적으로 증가함을 보이는 반면, 25MPa인 경우 밀도의 급격한 감소(gas-like phase;ρ≒0.17)로 인해 아임계 영역에 비해 급격히 분해속도가 증가함을 보였다. 가수분해율은 각 온도에서 압력이 증가함에 따라 증가함을 보였으나, 체류시간이 증가함에 따라서는 가수분해율은 감소하고, 열분해율은 증가하는 경향을 나타내었다. 구체적인 실험결과로는 온도에 따라 아임계 영역인 330 ℃에서 가수분해율 및 glucose 수율은 90.20 wt%와 39.68 wt%, 360 ℃에서는 92.39 wt%와 35.19 wt%, 초임계 영역인 400 ℃에서는 82.61 wt%와 21.20 wt%의 각각 최고치를 보였다. 결과적으로, 25 MPa에서는 아임계 영역에 비해 초임계 영역에서 cellulose 분해속도의 급격한 증가에 의하여 반응속도 상수가 증가하지만, 가수분해율과 glucose 수율은 초임계 영역에 비해 아임계 영역에서 훨씬 높은 것을 확인할 수 있었다.
To identify the hydrolysis characteristics of cellulose, the main component of biomass, the decomposition rate and yield for conversion from cellulose into products were compared by varying reaction temperature, pressure and time in the range of the subcritical and supercritical water. A series of experiments were conducted to feed cellulose slurry continuously in the ranges of temperature 330-400 ℃, pressure 25-40 MPa and residence time 0.016-3.5 sec with a high pressure slurry pump. The decomposition rate of cellulose increased linearly with increasing temperature without a pressure effect in the subcritical region. Meanwhile, in the case of 40 MPa at the supercritical region, the rate constant increased almost linearly like in the subcritical region but the decomposition rate at the pressure of 25 MPa increased drastically more than that of the subcritical water due to the extreme decrease in density(gas-like phase; ρ≒0.17). It was shown that yields of hydrolysis products increased with increasing pressure at each temperature. However, as the residence time increases, yields of hydrolysis products decreased and those of pyrolysis products increased. The maximum yields of hydrolysis products and glucose were 90.20 wt% and 39.68 wt% at 330 ℃ in the subcritical region, 92.39 wt% and 35.19 wt% at 360 ℃ in the near-critical region and 82.61 wt% the 21.20 wt% at 400 o C in the supercritical region. Consequently, although the decomposition rate of cellulose jumped up at 25 MPa in the supercritical region, yields of hydrolysis products and glucose were much higher in the subcritical region than those in the supercritical region, considering the selectivity.

References

Shafizadeh F, in IUPAC-Carbohydrate Chemistry, IV Madison (1972)
Sjostrom E, Chemistry W, "Fundamental and Applications," Academic Press, New York (1981)
Mok WSL, Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 31, 94 (1992) 
Pourquie J, Vandecasteele JP, Biochem. Energy Ind., 2(2), 52 (1990)
Adschiri T, Hirose S, Malaluan R, Arai K, J. Chem. Eng. Jpn., 26(6), 676 (1993) 
Klein MT, Torry LA, Wu BC, Townsend S, J. Supercrit. Fluids, 3, 222 (1990) 
Baker E, Sealock GL, Elliot D, Butner R, Ind. Eng. Res., 32, 1535 (1993) 
Kestin J, Sengers JV, Kamgar-Parsi B, Levelt S, J. Phys. Chem. Ref. Data, 13(1), 175 (1984)
Sasaki M, "Study of Cellulose Decomposition Pathways in Subcritical and Supercritical Water," Master Dissertation, Tohoku Univ., Sendai (1996)
Sasaki M, Kabymela B, Adschiri T, International Symp. Supercritical Fluids, B, 583 (1997)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로