Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고령토에 의한 증기상 중금속의 고온 제거에 관한 연구 - 납 흡착 반응 특성
Study on High-Temperature Capture of Vapor-Phase Heavy Metal by Kaolin - Lead Sorption Reaction Characteristics
충남대학교 화학공학과, 대전 305-764 1한국원자력연구소 핵연료주기 연구개발단, 대전 305-353
Dept. of Chem. Eng., Chungnam National University, Daejeon 305-764, Korea 1Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea
HWAHAK KONGHAK, August 2001, 39(4), 470-476(7), NONE
Download PDF
Abstract
소결시킨 kaolin 흡착제 고정층에서의 기체상 납 흡착반응을 973-1, 173 K의 온도범위에서 속도론적으로 고찰하였다. 흡착반응속도에 대한 반응온도 및 기체상 반응물 농도의 영향은 속도론적 모델을 통한 실험자료 분석으로 평가되었다. 납-흡착제 반응에 대한 보다 자세한 정보는 반응 전·후 흡착제에 대한 XRD(X-ray diffraction) 분석 및 현미경분석으로 얻어졌다. Kaolin 광물의 소결 생성물인 metakaoinite와 기체상 납과의 반응은 안정적인 금속-광물 화합물(PbAl2Si2O8)을 생성하였다. 반응온도의 증가는 납 제거속도를 증가시켰지만 최대 흡착량에는 영향을 주지 못했다. 납 농도에 대한 반응차수, m은 1.67로 결정되었다. Arrhenius 식에 의해 구해진 활성화에너지 E(a)는 10.16 kcal/mol이었다.
This study investigated the kinetics of the sorption reaction for gaseous lead capture in the packed bed of cal-cined kaolin at 973-1,173 K. The effects of bed temperature and gaseous reactant concentration on the sorption reaction rate were observed by the analysis of experimental data with a developed kinetic model. Detailed information on the lead-sorbent_x000D_
reaction were obtained by the XRD(X-ray diffraction) pattern analysis and the microscopic analysis of pre- and post-sorption sorbent samples. The reaction between metakaolinite, which is the calcination product of kaolin minerals, and the gas-phase lead generated stable metal-mineral complexes(PbAl2Si2O8). An increase in bed temperature resulted in an increase of captur-ing rate, but it had no effect on maximum uptake. The order of sorption reaction with respect to the lead concentration, m, was determined to be 1.67. The activation energy, E a , was estimated as 10.16 kcal/mol, according to the Arrhenius relationship.
References
Barton RG, Clark WD, Seeker WR, Combust. Sci. Technol., 74, 327 (1990)
Edwin AK, Howell HH, J. Air Waste Manage. Assoc., 40, 1220 (1990)
Yang HC, Kim JH, Seo YC, Kang Y, Korean J. Chem. Eng., 13(3), 261 (1996)
Yang HC, Kim JH, Oh WJ, Park HS, Seo YC, Environ. Eng. Sci., 15, 299 (1998)
Yang HC, Seo YC, Kim JH, Park HH, Kang Y, Korean J. Chem. Eng., 11(4), 232 (1994)
Lee CC, JAPCA, 38, 941 (1988)
Linak WP, Wendt JOL, Prog. Energy Combust. Sci., 19, 145 (1993)
Perdek J, Seeker WR, Superfund Innovative Technology Evaluation Program, 7, 332 (1994)
Davison RL, Natusch DRS, Wallace JR, Environ. Sci. Technol., 8, 1107 (1974)
Ghosh-Dastidar A, Mahuli S, Agnihotri R, Fan LS, Environ. Sci. Technol., 30, 447 (1996)
Ho TC, Chen C, Hopper JR, Oberacker DA, Combust. Sci. Technol., 85, 101 (1992)
Lee HT, Ho TC, Hsiao CC, Bostick WD, Proc. of 1996 International Conf. on IT3, Savannah, Georgia, USA, 561 (1995)
Mahuli S, Agnihotri R, Chauk S, Ghosh-Dastidar A, Fan LS, Environ. Sci. Technol., 31, 3226 (1997)
Scotto MA, Peterson TW, Wendt JOL, 24th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1109 (1992)
Uberoi M, Shadman F, AIChE J., 36, 306 (1990)
Wouterlood HJ, Bowling KM, Am. Chem. Soc., 13, 93 (1979)
Eddings EG, Lighty JS, Kozinski JA, Environ. Sci. Technol., 1791 (1994)
Yang HC, Yun JS, Kang MJ, Kim JH, Kang Y, Korean J. Chem. Eng., 16(5), 646 (1999)
Sherwood TK, Pigford RL, Wilke CR, "Mass Transfer," McGraw-Hill, Chemical Engineering Series, 319 (1975)
Park HC, Moon H, Korean J. Chem. Eng., 1(2), 165 (1984)
Perry RH, Green D, "Perry's Chemical Engineers Handbook," McGraw-Hill, INC., 6, 3/285 (1984)
Satterfield CN, "Heterogeneous Catalysis in Industrial Practice," McGraw-Hill, INC., 2, 471 (1993)
Edwin AK, Howell HH, J. Air Waste Manage. Assoc., 40, 1220 (1990)
Yang HC, Kim JH, Seo YC, Kang Y, Korean J. Chem. Eng., 13(3), 261 (1996)
Yang HC, Kim JH, Oh WJ, Park HS, Seo YC, Environ. Eng. Sci., 15, 299 (1998)
Yang HC, Seo YC, Kim JH, Park HH, Kang Y, Korean J. Chem. Eng., 11(4), 232 (1994)
Lee CC, JAPCA, 38, 941 (1988)
Linak WP, Wendt JOL, Prog. Energy Combust. Sci., 19, 145 (1993)
Perdek J, Seeker WR, Superfund Innovative Technology Evaluation Program, 7, 332 (1994)
Davison RL, Natusch DRS, Wallace JR, Environ. Sci. Technol., 8, 1107 (1974)
Ghosh-Dastidar A, Mahuli S, Agnihotri R, Fan LS, Environ. Sci. Technol., 30, 447 (1996)
Ho TC, Chen C, Hopper JR, Oberacker DA, Combust. Sci. Technol., 85, 101 (1992)
Lee HT, Ho TC, Hsiao CC, Bostick WD, Proc. of 1996 International Conf. on IT3, Savannah, Georgia, USA, 561 (1995)
Mahuli S, Agnihotri R, Chauk S, Ghosh-Dastidar A, Fan LS, Environ. Sci. Technol., 31, 3226 (1997)
Scotto MA, Peterson TW, Wendt JOL, 24th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1109 (1992)
Uberoi M, Shadman F, AIChE J., 36, 306 (1990)
Wouterlood HJ, Bowling KM, Am. Chem. Soc., 13, 93 (1979)
Eddings EG, Lighty JS, Kozinski JA, Environ. Sci. Technol., 1791 (1994)
Yang HC, Yun JS, Kang MJ, Kim JH, Kang Y, Korean J. Chem. Eng., 16(5), 646 (1999)
Sherwood TK, Pigford RL, Wilke CR, "Mass Transfer," McGraw-Hill, Chemical Engineering Series, 319 (1975)
Park HC, Moon H, Korean J. Chem. Eng., 1(2), 165 (1984)
Perry RH, Green D, "Perry's Chemical Engineers Handbook," McGraw-Hill, INC., 6, 3/285 (1984)
Satterfield CN, "Heterogeneous Catalysis in Industrial Practice," McGraw-Hill, INC., 2, 471 (1993)