ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

공기리프트 생물막 반응기에서의 폐수 질화 및 유기물 동시산화에 관한 모델링과 수치모사

Modeling and Simulation of the Simultaneous Wastewater Nitrification and Organics Oxidation in Airlift Biofilm Reactors

건국대학교 화학공학과, 서울 143-701
Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea
issuh@konkuk.ac.kr
HWAHAK KONGHAK, August 2001, 39(4), 501-511(11), NONE
downloadDownload PDF

Abstract

공기리프트 반응기에서의 생물입자를 이용한 폐수 질화 및 유기물 동시산화에 대한 반응기 모델을 제시하였다. 생물막 내에서 물질확산과 반응, 액-고 물질전달 및 기-액 산소전달을 고려하였으며, 반응기 액상 부유균체에 의한 질화 및 유기물 산화도 동시에 고려하였다. 이중 모노드 식을 질화 및 유기물 산화 반응을 묘사하는데 적용하였다. 수치모사방법을 사용하여 생물막 유효물질확산계수, 담체크기, 공기유속 및 반응기 운전압력, 유입수 유량 및 유기물농도, 그리고 생물막 내 유기물 최대산화속도가 공기리프트 반응기에서의 폐수 질화 및 유기물 산화에 미치는 영향을 분석하였다. 공기유속, 담체질량 및 생물막 두께 등의 주어진 조건에서 담체크기가 감소함에 따라 암모니움 및 아질산 산화속도는 증가하였다. 질화 및 유기물 동시산화 반응에서 반응기 용존산소농도에 아질산 산화반응이 먼저 영향을 받으며 유기물 산화반응은 부유균체 농도에 영향을 받는 것을 보였다. 유입수 유기물농도가 증가함에 따라 유기물 산화속도는 증가하였고 암모니움 및 아질산 산화속도는 감소하였다.
A reactor model was developed for the simultaneous nitrification and organic oxidation of wastewater in airlift reactors with bioparticles. The diffusion and reaction in the biofilm of bioparticles, liquid-solid mass transfer, and gas-liquid oxy-gen transfer were taken into account together with the consideration of the nitrification and organic oxidation by the biomass suspended in the liquid phase of the reactor. Double Monod-type kinetics was employed for representing the reactions of the nitrification and the organic oxidation. Using the numerical simulation, it was discussed how the nitrification and the organic oxi-dation of the wastewater were influenced in the airlift reactor by effective diffusivity in the biofilm, bioparticle media size, air_x000D_ velocity and reactor operation pressure, flow rate and organic concentration of the feed, and maximum organic oxidation rate in the biofilm. The oxidation rate of ammonia and nitrite increased at the given conditions of the air velocity, the media amount and the biofilm thickness, as decreasing the media size. It was demonstrated in the simultaneous nitrification and organic oxidation of wastewater that the nitrite oxidation was first affected by the reactor liquid-phase concentration of dissolved oxygen and the organic oxidation was influenced by the biomass suspended in the liquid phase of reactor. As increasing the organic concentra-tion of the feed, the organic oxidation rate increased but the oxidation rates of ammonia and nitrite decreased.

References

Siegel MH, Robinson CW, Chem. Eng. Sci., 47, 3215 (1992) 
Suh IS, Schumpe A, Deckwer WD, Biotechnol. Bioeng., 39, 85 (1992) 
Heijnen SJ, Mulder A, Weltevrede R, Hols PH, van Leeuwen HLJM, Chem. Eng. Technol., 13, 202 (1990) 
Heo CH, Suh IS, Theor. Appl. Chem. Eng., 3, 1049 (1997)
Livingston AG, Chase HA, AIChE J., 35, 1980 (1989) 
Denac M, Uzman S, Tanaka H, Dun IJ, Biotechnol. Bioeng., 25, 1841 (1983) 
Garrido JM, Vanbenthum WA, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 53(2), 168 (1997) 
van Benthum WAJ, van Loosdrecht MDM, Heijnen JJ, Biotechnol. Bioeng., 53, 398 (1997) 
Haug RT, McCarty PL, J. WPCF, 48, 281 (1976)
Sharma B, Ahlert RC, Water Res., 11, 897 (1977) 
Muroyama K, Mitani Y, Yasunish A, Chem. Eng. Commun., 34, 87 (1985)
Akita K, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 12, 76 (1973) 
Nguyen-Tien K, Patwari AN, Schumpe A, Deckwer WD, AIChE J., 31, 194 (1985) 
Schumpe A, Saxena AK, Fang LK, Chem. Eng. Sci., 42, 1787 (1987) 
Saenger P, Dekewer WD, Chem. Eng. J., 22, 179 (1981) 
Gujer W, Henze M, Mino T, van Loosdrecht M, Water Sci. Technol., 39, 183 (1999)
Cheng SS, Chen WC, Water Sci. Technol., 30, 131 (1994)
Press WH, Teukolsky SA, Vetterling WT, Flannery BP, "Numerical Recipes in FORTRAN: the Art of Scientific Computing," 2nd ed., Cambridge University Press, New York, NY (1994)
Chen GH, Ozaki H, Terashima Y, Water Sci. Technol., 21, 791 (1989)
Hunik JH, Bos CG, Vandenhoogen MP, Degooijer CD, Tramper J, Biotechnol. Bioeng., 43(11), 1153 (1994) 
Livingston AG, Chase HA, Chem. Eng. Commun., 92, 225 (1990)
Wanner O, Reichert P, Biotechnol. Bioeng., 49(2), 172 (1996) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로