ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

연소합성을 이용한 탄화질화 티타늄 세라믹 제조에서의 연소특성

Combustion Characteristics for Producing Titanium Carbonitride Ceramics by Combustion Synthesis

건국대학교 화학공학과, 서울 143-701 1애경유지 중앙연구소, 대전 300-200
Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea 1Central Research Laboratory, Aekyung Industrial Co., Daejeon 300-200, Korea
sanghkim@konkuk.ac.kr
HWAHAK KONGHAK, October 2001, 39(5), 527-535(9), NONE
downloadDownload PDF

Abstract

고온에서 우수한 경도와 산화에 대한 안정성을 가지고 있는 탄화질화 티타늄의 연소합성에 대하여 고찰하였다. 압착된 반응물은 연소전면이 통과한 후에도 장시간 동안 고온을 유지하면서 반응이 일어나고 있었다. 질화티타늄(TiN)과 탄화질화 티타늄(TiC(x)N(1-x))을 생산하는 과정에서 위와 같은 후연소(after-burn)가 약 20-100초동안 일어나는 것이 관측되었다. 후연소 시간은 반응물의 티타늄에 대한 탄소의 몰비가 증가함에 따라서 증가하고, 이의 몰비가 약 0.7에서 최대의 후연소 시간을 나타낸 다음에 몰비가 더욱 증가하면 후연소 시간이 감소하였다. 연소온도와 연소파의 전파속도는 반응물의 티타늄에 대한 탄소의 몰비가 증가함에 따라서 증가하였고 관측된 연소파의 속도는 0.4cm/sec를 나타내었다. 반응성이 높은 카본블랙을 탄소원으로 사용하여 연소합성에 의하여 제조된 탄화티타늄(TiC(x))은 반응중에 티타늄의 용융이 일어나 이것이 탄소사이의 간극을 통하여 모세관 퍼짐(capillary speading)이 일어나는 것이 관측되었다. 연소합성에 의하여 제조한 탄화질화 티타늄의 표면 미세조직으로부터 카본블랙이 세라믹을 합성하는데 반응성이 높고 반응물중의 티타늄에 대한 탄소의 몰비가 감소할수록 티타늄의 용융을 촉진시킨다는 것을 알 수 있었다.
The combustion synthesis of titanium carbonitride ceramics with excellent hardness and chemical stability to oxidation at high temperatures was investigated. The compacted reactants remained at a relatively high temperature for the greater length of time after the passage of combustion front transversing the compact. After-burn time of about 20 to 100 seconds was detected for producing titanium nitride and titanium carbonitride ceramics. After-burn time increased with the increasing ratio of carbon to titanium in the reactants, reached the maximum value at its ratio of 0.7, and thereafter decreased with the further increasing ratio of carbon to titanium. The combustion temperatures as well as the velocity of combustion waves increased with the increasing ratio of carbon to titanium in the reactants. The velocity of combustion waves reached the constant value of 0.4 cm/sec at higher ratio of carbon to titanium than 0.70 in the reactants. The microstructure of combustion-synthesized titanium carbide using the carbon black as carbon source showed the existence of titanium melting during the combustion reaction and the capillary spreading of melted titanium between the interstices of solid carbon. The surface of combustion-synthesized titanium carbonitride revealed that the carbon black was active for producing the carbonitride ceramics and the decreasing ratio of carbon to titanium in the reactants enhanced the melting of the titanium during the reaction.

References

Merzhanov AG, Borovinskaya IP, Combust. Sci. Technol., 10, 195 (1975)
Crider JF, Ceram. Eng. Sci. Proc., 3, 519 (1982)
McCauley JW, Ceram. Eng. Sci. Proc., 11, 1137 (1990)
Hlavecek V, Am. Ceram. Soc. Bull., 69, 537 (1990)
Munir ZA, Anselmi-Tamburini V, Mater. Sci. Report, 3, 277 (1989) 
Munir ZA, Ceram. Bull., 67, 342 (1988)
McCauley JW, Ceram. Eng. Sci. Proc., 9, 503 (1988)
Frankhouser WL, "Advanced Processing of Ceramic Compounds," Noyes Data Corp., Park Ridge, New Jersey (1987)
Toth LE, "Transition Metal Carbides and Nitrides," Academic Press, New York (1971)
Storms EK, "The Rafractory Carbides," Academic Press, New York (1967)
Stasyuk LF, Neshpor VS, Sov. Powder Metall. Ceram., 18, 851 (1988)
Kim SH, Chem. Ind. Technol., 8, 506 (1990)
Shkiro VM, Borovinskaya IP, Merzhanov AG, Sov. Powder Metall. Ceram., 18, 684 (1979) 
Arbuzov MP, Moshkovskii EI, Lyashchenko AB, Sov. Powder Metall. Ceram., 20, 426 (1981) 
Kirdyashkin AI, Maksimov YM, Nekrasov EA, Combust. Explos. Shock Waves, 17, 377 (1981) 
Nekrasov EA, Smolyakov VK, Maksimov YM, Combust. Explos. Shock Waves, 17, 513 (1982) 
Holt JB, Munir ZA, J. Mater. Sci., 21, 251 (1986) 
Sarian S, J. Appl. Phys., 39, 3305 (1968) 
Sarian S, J. Appl. Phys., 40, 3515 (1969) 
Baldoni JG, Buljan ST, Ceram. Bull., 67, 381 (1988)
Pierson HO, "Handbook of Chemical Vapor Deposition," pp. 213 (1992)
Munir ZA, Deevi SD, Eslamloo-Grami M, High Temperature-High Pressure, 20, 19 (1988)
Deevi S, Munir ZA, J. Mater. Res., 5, 2177 (1990)
Munir ZA, Holt JB, J. Mater. Sci., 22, 710 (1987) 
Eslamloo-Grami M, Munir ZA, J. Am. Ceram. Soc., 73, 2222 (1990) 
Eslamloo-Grami M, Munir ZA, J. Am. Ceram. Soc., 73, 1235 (1990) 
Agrafiotis CC, Puzynski JA, Hlavacek V, Combust. Sci. Technol., 76, 187 (1991)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로