Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Ziegler-Natta 촉매 및 Metallocene 촉매로 제조된 PE 입자의 유동층에서의 공극률 특성
Characteristics of Bed Voidage in a Fluidized Bed of Polyethylene Particles Polymerized by Ziegler-Natta and Metallocene Catalysts
성균관대학교 화학공학과, 수원 440-746 1한화석유화학, 대전305-345
Dept. of Chem. Eng., Sungkyunkwan Univ., Suwon 440-746, Korea 1Hanwha Petrochemical Co., Daejeon 305-345, Korea
HWAHAK KONGHAK, December 2001, 39(6), 734-738(5), NONE
Download PDF
Abstract
Ziegler-Natta 및 Metallocene 촉매로 기상유동층에서 중합된 polyethylene 입자의 공극률 특성을 높이 50 cm, 직경 7 cm의 유동층 실험장치에서 관찰하였다. 기체유속이 최소유동화 속도에서 난류유동화 속도까지 변화할 때 유동층 내에의 평균 공극률은 Metallocene 촉매로 중합된 PE의 경우 0.4-0.65이었고, Ziegler-Natta 촉매로 중합된 PE의 경우 0.4-0.85이었다. 입도분포가 비교적 넓은 Ziegler-Natta 촉매로 중합된 PE가 Metallocene 촉매로 중합된 PE 보다 압력변동의 폭이 작았으며, Metallocene 촉매로 중합된 PE에 Ziegler-Natta 촉매로 중합된 PE를 첨가함에 따라 압력변동의 폭이 감소하면서 공극률은 증가하였다.
The characteristics of bed voidage in a fluidized bed of polyethylene particles polymerized by metallocene and Ziegler-Natta catalysts were investigated in a fluidized bed of 7 cm I.D. and 50 cm in height. The average bed voidage for the ranges of gas velocity from minimum fluidization velocity to turbulent fluidization velocity were 0.4-0.65 for PE with Metallocene catalyst and 0.4-0.85 for PE with Ziegler-Natta catalyst. The pressure fluctuations were smaller for PE with Ziegler-Natta catalyst than that with Metallocene catalyst. The addition of PE with Ziegler-Natta catalyst to the PE with Metallocene catalyst reduced the pressure fluctuations and increased the bed voidage.
References
Xie TY, Mcauley KB, Hsu JC, Bacon DW, Ind. Eng. Chem. Res., 33(3), 449 (1994)
Zijerveld RC, Johnsson F, Marzocchella A, Schouten JC, van den Bleek CM, Powder Technol., 95(3), 185 (1998)
Bai D, Issangya AS, Grace JR, Ind. Eng. Chem. Res., 38(3), 803 (1999)
Grace JR, Can. J. Chem. Eng., 64, 353 (1986)
Geldart D, Powder Technol., 7, 285 (1973)
Kim S, Han G, HWAHAK KONGHAK, 37(2), 191 (1999)
Cho HI, Chung CH, Han GY, Ahn GR, Kong JS, Korean J. Chem. Eng., 17(3), 292 (2000)
Kim SH, Han GY, Korean J. Chem. Eng., 16(5), 677 (1999)
Avidan A, Yerushalmi J, Powder Technol., 32, 223 (1982)
Matsen JM, "Circulating Fluidized Bed Technology II," Basu, P. and Large, J.F.(eds.), Pergamon Press, Oxford, 3 (1988)
Zijerveld RC, Johnsson F, Marzocchella A, Schouten JC, van den Bleek CM, Powder Technol., 95(3), 185 (1998)
Bai D, Issangya AS, Grace JR, Ind. Eng. Chem. Res., 38(3), 803 (1999)
Grace JR, Can. J. Chem. Eng., 64, 353 (1986)
Geldart D, Powder Technol., 7, 285 (1973)
Kim S, Han G, HWAHAK KONGHAK, 37(2), 191 (1999)
Cho HI, Chung CH, Han GY, Ahn GR, Kong JS, Korean J. Chem. Eng., 17(3), 292 (2000)
Kim SH, Han GY, Korean J. Chem. Eng., 16(5), 677 (1999)
Avidan A, Yerushalmi J, Powder Technol., 32, 223 (1982)
Matsen JM, "Circulating Fluidized Bed Technology II," Basu, P. and Large, J.F.(eds.), Pergamon Press, Oxford, 3 (1988)