Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
준수계 세정제의 물성 및 세정성 평가
Evaluation of Cleanness and Physical Properties of Semi-Aqueous Cleaning Agents
Byeong Deog Park†
Myung Jin Lee
Ji Won Han
Jong Ki Lee1
Dong Ki Lee2
Sang Won Han
Sun Woo Park
Ho Yeol Lee
Jae Heum Bae3
(주)네오팜, 대전 305-333 1애경산업(주), 대전 305-345 2한국화학시험연구원, 서울 150-030 3수원대학교 화학공학과, 수원 445-743
NeoPharm Co., Ltd., Daejeon 305-333, Korea 1Aekyung Industrial Co., Ltd.,, Daejeon 305-345, Korea 2Korea Testing and Research Institute for Chemical Industry, Seoul 150-030, Korea 3Department of Chemical Engineering, The University of Suwon, Suwon 445-743, Korea
bdpark@channeli.net
HWAHAK KONGHAK, February 2002, 40(1), 106-113(8), NONE
Download PDF
Abstract
비이온 계면활성제로서 polyoxyethylene(3,5,7) alkyl ether(LAE-3,5,7), 물, 소수성 오일 성분으로서의 D-limonoene, 보조 계면활성제로서 알코올류 조성에 대한 4성분계 시스템에서 36종의 조성물을 제조하여 물성 평가를 수행한 결과, 30-32 dyne/cm의 낮은 표면장력의 값과 낮은 점도의 물성을 보여 water-in-oil(W/O)형 산업용 세정제의 일반적인 물성을 만족하였다. 이들 조성물들의 안정한 단일상으로 존재하는 온도의 범위는 alcohol/surfactant(A/S)비의 증가에 따라 감소되는 경향을 보이고 있으나, 전체적으로는 계면활성제의 hydrophilic lipophilic balance(HLB) 값에 크게 영향을 받고 있으며, HLB 값이 높을수록 안정하게 존재하는 온도 영역이 증가되는 경향을 보여주고 있다. 오염원으로 프럭스 제조에 사용되는 abietic acid에 대한 세정 효율을 검토하여 본 결과, A/S의 비가 증가됨에 따라서 세정효율이 감소하는 경향을 보여주었으나, 그 차이는 그다지 크지 않았다. 그러나 비이온 계면활성제의 HLB 값이 낮을수록 높은 세정 효율을 보여주어, W/O microemulsion의 경우 비이온 계면활성제의 선정이 매우 중요함을 확인할 수 있었다. 세정공정 중 린스조에서의 유분 오염물이 함유된 린스액의 유수분리 효율을 측정한 결과, HLB 값이 8.3-10.6인 계면활성제를 사용한 system의 경우 40℃ 이상에서 80%이상의 높은 제거 효율을 보여, 효율적인 세정 및 관리가 가능한 것으로 판단되었다.
Using four components consisting of polyoxyethylene(3, 5, 7) alkyl ether(LAE-3, 5, 7) as nonionic surfactants, water, D-limonene as hydrophobic oil component, and an alcohol as cosurfactant, 36 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30-32 dyne/cm) and low viscosities, they are satisfied with the general physical properties of water-in-oil(W/O) cleaning agents for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophilic_x000D_
balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. Although the formulated cleaning agents showed a tendency that their cleaning efficacy decreased in accordance with the increase of A/S ratio in the formulations, there was no significant difference in cleaning abietic_x000D_
acid as a soil, which was used for preparing a rosin-type flux. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy than that of the higher HLB value. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 8.3-10.6 showed over 80% water-oil separation efficacy at over 40 ℃. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.
Keywords
References
Row KH, Choi DK, Lee YY, Chem. Ind. Technol., 10(5), 328 (1992)
양재열, "국내특정물질 수급동향 및 사용합리화 기초안내," 2001년도 오존층 파괴물질 사용합리화 대책기술세미나, 기술표준원, 한국정밀화학공업진흥회 (2001)
Row KH, 공기조화 냉동공학, 25, 53 (1996)
Swisher RD, "Surfactant Biodegradation," Marcel Dekker, New York (1985)
Myers D, "Surfactant Science and Technology," VCH Publisher, Inc., New York (1988)
Eiji N, Kozo Y, U.S. Patent, 5,958,298 (1999)
Junji K, Eiji N, U.S. Patent, 5,954,891 (1999)
Kozo K, U.S. Patent, 5,853,489 (1998)
Kozo K, Atsushi T, U.S. Patent, 5,725,679 (1998)
Shin MC, Lee HY, Bae JH, J. Korean Ind. Eng. Chem., 11(8), 825 (2000)
Bae JH, Shin MC, Clean Technol., 5(2), 1 (1999)
Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987)
Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989)
Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
Raney KH, Benson H, J. Am. Oil Chem. Soc., 67, 722 (1990)
Miller CA, Raney KH, Colloids Surf. A: Physicochem. Eng. Asp., 74, 169 (1993)
Ko HK, Park BD, Lim JC, J. Korean Ind. Eng. Chem., 11(6), 679 (2000)
Ko HK, M.S. Thesis, Dongguk Univ., Chemical Engineering (1999)
양재열, "국내특정물질 수급동향 및 사용합리화 기초안내," 2001년도 오존층 파괴물질 사용합리화 대책기술세미나, 기술표준원, 한국정밀화학공업진흥회 (2001)
Row KH, 공기조화 냉동공학, 25, 53 (1996)
Swisher RD, "Surfactant Biodegradation," Marcel Dekker, New York (1985)
Myers D, "Surfactant Science and Technology," VCH Publisher, Inc., New York (1988)
Eiji N, Kozo Y, U.S. Patent, 5,958,298 (1999)
Junji K, Eiji N, U.S. Patent, 5,954,891 (1999)
Kozo K, U.S. Patent, 5,853,489 (1998)
Kozo K, Atsushi T, U.S. Patent, 5,725,679 (1998)
Shin MC, Lee HY, Bae JH, J. Korean Ind. Eng. Chem., 11(8), 825 (2000)
Bae JH, Shin MC, Clean Technol., 5(2), 1 (1999)
Raney KH, Benton WJ, Miller CA, J. Colloid Interface Sci., 117, 282 (1987)
Mori F, Lim JC, Raney OG, Elsik CM, Miller CA, Colloids Surf., 40, 323 (1989)
Mori F, Lim JC, Miller CA, Prog. Colloid Polym. Sci., 82, 114 (1990)
Raney KH, Benson H, J. Am. Oil Chem. Soc., 67, 722 (1990)
Miller CA, Raney KH, Colloids Surf. A: Physicochem. Eng. Asp., 74, 169 (1993)
Ko HK, Park BD, Lim JC, J. Korean Ind. Eng. Chem., 11(6), 679 (2000)
Ko HK, M.S. Thesis, Dongguk Univ., Chemical Engineering (1999)