ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

공기리프트 생물막 반응기에서의 폐수 질화

Wastewater Nitrification in Airlift Biofilm Reactors

건국대학교 화학공학과, 서울 143-701
Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea
issuh@konkuk.ac.kr
HWAHAK KONGHAK, April 2002, 40(2), 259-264(6), NONE
downloadDownload PDF

Abstract

온도와 용존산소농도의 질화속도에 미치는 영향을 조사하기 위하여 질화 생물막을 27.7 L의 공기리프트 생물반응기에서 직경 0.613 mm 활성탄 입자 담체에 형성시켰다. 질화 박테리아의 최대 비생장속도보다 큰 희석률을 이용하여 130일 동안 운전한 후에 두께 0.140 mm의 생물막이 형성되었다. 공기유속과 암모니움 부하율을 순차적으로 증가시킴에 따라, 암모니움 산화속도는 단계적으로 증가하여 6.34 cm/s 상승관 공기유속 및 30 ℃ 온도에서 5 kg N/m(3)ㆍd의 최대속도를 나타내었다. 암모니움 산화속도는 용존산소농도를 증가시킴에 따라 증가하였다. 아질산 산화속도는 반응기 운전 초기에는 용존산소농도에 거의 영향을 받지 않았다. 그러나 후기에 형성되는 생물막은 아질산 축적을 소멸시켰으며 용존산소농도가 증가함에 따라 증가하는 아질산 산화속도를 보였다. 질화속도는 온도를 증가시킴에 따라 5 ℃에서 20 ℃의 낮은 온도범위에서는 상당히 증가하였고 20 ℃에서 30 ℃의 높은 온도범위에서는 약간 증가하였다. 높은 온도에서는 생물막에서의 산소 물질확산이 질화 반응속도론 보다 중요한 역할을 하였다.
The nitrifying biofilm was formed on the carriers of granular activated carbon with the diameter of 0.613 mm in the airlift bioreactor of 27.7 L to investigate the influences of temperature and dissolved oxygen concentration on the nitrification rate. The biofilm of 0.140 mm thickness was obtained after the operation of 130 days with the dilution rate higher than the maximum specific growth rate of nitrifying bacteria. As raising alternately air velocity and ammonium loading rate, ammonium oxidation rate increased stepwise up to the maximum value of 5 kg N/m(3)ㆍd at the riser air velocity of 6.34 cm/s and the temperature of 30 ℃. The ammonium oxidation rate increased with increasing the dissolved oxygen concentrations, while the nitrite oxidation rates were almost independent from the dissolved oxygen concentration during the early stages of the reactor operation. The biofilm formed at the late phase, however, led the nitrite build-up to disappear and exhibited the nitrite oxidation rates which increased with the dissolved oxygen concentration. As raising temperature, the nitrification rate increased appreciably at the low temperatures of 5 ℃ to 20 ℃ and then slightly at the high temperatures of 20 ℃ to 30 ℃. The oxygen diffusion in the biofilm played a dominant role at high temperatures rather than the nitrification kinetics.

References

Siegel MH, Robinson CW, Chem. Eng. Sci., 47, 3215 (1992) 
Heijnen SJ, Mulder A, Weltevrede R, Hols PH, Leeuwen HLJM, Chem. Eng. Technol., 13, 202 (1990) 
Benniger RW, Sherrard JH, J. WPCF, 50, 2132 (1978)
Adams CE, Eckenfelder WW, J. WPCF, 49, 413 (1977)
Prakasama TBS, Robinson WE, Lue-Hing C, Proc. Ind. Waste Conf., Purdue University, Lafayette, 745 (1977)
Stensel HD, Brenner RC, Lee KM, Melcer H, Rakness K, J. Envir. Engng., 114, 655 (1988)
Mueller R, in Mattock B(Ed), "New Processes of Waste Treatment and Recovery," Ellis Horwood, Chichester (1978)
Haug RT, McCarty PL, J. WPCF, 44, 2086 (1972)
Tsunoda S, Shimada K, Aoyagi Y, Kagaku Kogaku, 40, 402 (1976)
Tanaka H, Uzman S, Dunn IJ, Biotechnol. Bioeng., 23, 1683 (1981) 
Cooper PF, Williams SC, Wat. Sci. Tech., 22, 431 (1990)
Gauntlett RB, in P.F. Cooper and Atkinson B(Eds.) "Biological Fluidized Bed Treatment of Water and Wastewater," Ellis Horwood, Chichester, 48 (1981)
Tijhuis L, Loosdrecht MCM, Heijnen JJ, Wat. Sci. Tech., 26, 2207 (1992)
Heijnen JJ, Loosdrecht MCM, Mulder R, Weltevrede R, Mulder A, Wat. Sci. Tech., 27, 253 (1993)
Hem LJ, Rusten B, Odegaard H, Wat. Res., 28, 1425 (1994) 
Chen SS, Chen WC, Wat. Sci. Tech., 30, 131 (1994)
Wijffels RH, Gooijer CD, Kortekaas S, Tramper J, Biotechnol. Bioeng., 38, 232 (1991) 
Monbouquette HG, Sayles GD, Ollis DF, Biotechnol. Bioeng., 35, 609 (1990) 
Heijnen JJ, Loosdrecht MCM, Mulder A, Tijhuis L, Wat. Sci. Tech., 26, 647 (1992)
Shin SH, Suh IS, Chang IY, Korean J. Biotechnol. Bioeng., 16, 337 (2001)
"Water Analysis Handbooks," 2nd ed., Hach, loveland (1992)
Heo CH, Sub IS, Theor. Appl. Chem. Eng., 7, 4015 (2001)
Heijnen JJ, Hols J, Vanderlans RG, Vanleeuwen HL, Mulder A, Weltevrede R, Chem. Eng. Sci., 52(15), 2527 (1997) 
Denac M, Uzman S, Tanaka H, Dunn IJ, Biotechnol. Bioeng., 25, 1841 (1983) 
Garrido JM, Vanbenthum WA, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 53(2), 168 (1997) 
Suh IS, HWAHAK KONGHAK, 39(3), 368 (2001)
Suh IS, HWAHAK KONGHAK, 39(4), 501 (2001)
Wanner O, Gujer W, Biotechnol. Bioeng., 28, 314 (1986) 
Jeris JS, Owens RW, Hickey R, J. WPCF, 47, 816 (1977)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로