Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
TiAIN 박막의 Electrical Resistivity에 대한 증착 변수의 영향
The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film
인하대학교 화학공학부, 인천 402-751 1삼성종합기술원 유인경연구팀, 수원 440-660
School of Chemical Engineering, Inha University, Incheon 402-751, Korea 1U-Team, Samsung Advanced Institute of Technology, Suwon 440-660, Korea
cwchung@inha.ac.kr
HWAHAK KONGHAK, August 2002, 40(4), 529-533(5), NONE
Download PDF
Abstract
반응성 직류 마그네트론 스퍼터링(dc magnetron reactive sputtering)을 이용하여 N2 flow rate와 dc power 그리고 증착 압력 등을 주요 변수로 선택하여 TiAlN 박막이 상온에서 증착 되었다. 증착된 박막에 대하여 증착 속도와 electrical resistivity가 조사되었고 결정 구조와 결정도를 알기 위하여 X-ray 회절법이 이용되었다. FESEM을 이용하여 증착된 박막의 grain 크기와 모양 및 표면이 관찰되었다. 증착 속도는 증착 압력의 변화에 대하여 일정하였으나, N2 flow rate가 증가함에 따라 약간 감소하였고 dc power가 증가함에 따라서 비례적으로 증가되었다. Electrical resistivity는 N2 flow rate의 변화에 대해서 일정한 값을 나타냈지만, dc power가 증가할수록 감소하는 경향을 보였으며 증착 압력이 증가할수록 증가하였다.
TiAlN thin films were deposited at room temperature by varying nitrogen flow rate, dc power and deposition pressure by dc magnetron reactive sputtering. The deposition rate and electrical resistivity of the deposited films were investigated and x-ray diffraction(XRD) was used to examine crystalline structure and crystallinity of the film. Surface morphology and grain shape of the deposited films were observed by using field emission scanning electron microscopy(FESEM). The deposition rate was no noticeable variation for the change of deposition pressure but it was a little decrease with increasing N2 flow rate and was proportionally increased with increasing dc power. Electrical resistivity was constant with respect to the change of N2 flow rate but it was decreased as a dc power increased and increased as a deposition pressure increased.
References
Huang CT, Duh JG, Surf. Coat. Technol., 81, 164 (1996)
Carson RT, Givens JH, Savage HS, Lee YW, Rigsbee JM, Croisant WJ, Thin Solid Films, 204, 285 (1991)
Yun JY, Rhee SW, Korean J. Chem. Eng., 13(5), 510 (1996)
Kim DH, Kim BY, Korean J. Chem. Eng., 17(4), 449 (2000)
Munz WD, J. Vac. Sci. Technol. A, 4, 2717 (1986)
Knotek O, Munz WD, Leyendecker T, J. Vac. Sci. Technol. A, 5, 2173 (1987)
Knotek O, Leyendecker T, J. Solid State Chem., 70, 318 (1987)
Shew BY, Huang HL, Surf. Coat. Technol., 71, 30 (1995)
Cheng YH, Tay BK, Lau SP, Shi X, J. Appl. Phys., 89, 6192 (2001)
Musil J, Hruby H, Thin Solid Films, 365(1), 104 (2000)
Hsieh JH, Liang C, Yu CH, Wu W, Surf. Coat. Technol., 108, 132 (1998)
Chen YI, Duh JG, Surf. Coat. Technol., 48, 163 (1991)
Carson RT, Givens JH, Savage HS, Lee YW, Rigsbee JM, Croisant WJ, Thin Solid Films, 204, 285 (1991)
Yun JY, Rhee SW, Korean J. Chem. Eng., 13(5), 510 (1996)
Kim DH, Kim BY, Korean J. Chem. Eng., 17(4), 449 (2000)
Munz WD, J. Vac. Sci. Technol. A, 4, 2717 (1986)
Knotek O, Munz WD, Leyendecker T, J. Vac. Sci. Technol. A, 5, 2173 (1987)
Knotek O, Leyendecker T, J. Solid State Chem., 70, 318 (1987)
Shew BY, Huang HL, Surf. Coat. Technol., 71, 30 (1995)
Cheng YH, Tay BK, Lau SP, Shi X, J. Appl. Phys., 89, 6192 (2001)
Musil J, Hruby H, Thin Solid Films, 365(1), 104 (2000)
Hsieh JH, Liang C, Yu CH, Wu W, Surf. Coat. Technol., 108, 132 (1998)
Chen YI, Duh JG, Surf. Coat. Technol., 48, 163 (1991)