Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
반응증류를 이용한 p-톨루엔 슬폰산 제조
Preparation of p-Toluene Sulfonic acid Using Reactive Distillation
충남대학교 화학공학과, 대전 305-764 1한국화학연구원 화학공정 연구센터, 대전 305-600
Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea 1Chemical Process and Engineering Center, KRICT, Daejeon 305-600, Korea
mwhan@cnu.ac.kr
HWAHAK KONGHAK, October 2002, 40(5), 565-571(7), NONE
Download PDF
Abstract
톨루엔 술폰산은 톨루엔과 황산을 이용하여 술폰화 반응을 통하여 얻어진다. 이 반응은 화학 평형에 의해 제한을 받는다. 이를 극복하기 위해 산업계에서는 과량의 황산을 사용함으로써 반응 수율을 높이고 있다. 그러나 이 과량의 황산은 환경문제를 야기시킨다. 본 연구에서는 반응증류를 이용하여 반응 수율을 증가시킴과 동시에 순수한 p-TSA를 얻는 공정에 대한 연구를 행하였다. 우선 반응 kinetics와 화학 반응 평형에 대한 연구를 하고 반응 기구를 제안하였으며 이를 바탕으로 모델링 및 모사, 기초실험을 행하여 톨루엔 술폰산 제조의 반응 증류 적용을 검토하였다.
The sulfonation of toluene to produce p-toluene sulfonic acid (p-TSA) is strongly limited by chemical equilibrium. Therefore, in chemical process industry, excess sulfonic acid is used in order to increase the reaction yield. However, this causes an environmental problem. We propose a new process using reactive distillation to increase the reaction yield and get pure p-TSA. The first step was to study the reaction kinetics and chemical equilibrium. In this work, we explored the feasibility of using a reactive distillation column for the preparation of p-TSA based on the simulation of the new column and kinetic data obtained by experiments.
References
Morrison RT, Boyd RN, "Organic Chemistry," 6th, Prentice-Hall, Inc., New York (1992)
Aspen Plus User Guide, Version 10.1, Aspen Technology, Inc.
Agreda VH, Partin LR, U.S. Patent, 4,435,595
Agreda VH, Partin LR, Heise WH, Chem. Eng. Prog., 86, 40 (1990)
Kornatsu H, J. Chem. Eng. Jpn., 10, 200 (1977)
Jaswal I, Pugi K, U.S. Patent, 3,900,450 (1975)
Smith LA, U.S. Patent, 4,978,807 (1990)
Masamoto J, Matsuzaki K, J. Chem. Eng. Jpn., 27(1), 1 (1994)
Doherty MF, Malone MF, Conceptual Design of Distillation Systems, McGraw-Hill, New York (2001)
Aspen Plus User Guide, Version 10.1, Aspen Technology, Inc.
Agreda VH, Partin LR, U.S. Patent, 4,435,595
Agreda VH, Partin LR, Heise WH, Chem. Eng. Prog., 86, 40 (1990)
Kornatsu H, J. Chem. Eng. Jpn., 10, 200 (1977)
Jaswal I, Pugi K, U.S. Patent, 3,900,450 (1975)
Smith LA, U.S. Patent, 4,978,807 (1990)
Masamoto J, Matsuzaki K, J. Chem. Eng. Jpn., 27(1), 1 (1994)
Doherty MF, Malone MF, Conceptual Design of Distillation Systems, McGraw-Hill, New York (2001)