Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고정층 재순환 반응기에서 이산화탄소의 수소화
Hydrogenation of CO2 in a Fixed Bed Recycle Reactor
한국화학연구원 화학기술부 환경자원팀, 대전 305-600 1충남대학교 화학공학과, 대전 305-764
Environment and Resources Team, KRICT, Daejeon 305-600, Korea 1Dept. of Chem. Eng., Chungnam National University, Daejeon 305-764, Korea
HWAHAK KONGHAK, October 2002, 40(5), 646-650(5), NONE
Download PDF
Abstract
이산화탄소의 수소화 반응 전환율(XCO2)을 증가시키기 위하여 재순환 반응기를 도입하였다. 이산화탄소의 수소화는 Fe-K/Al2O3 촉매를 이용하여 수행하였다. 고정층 반응기에서 반응 전환율은 반응온도와 체류시간(τmod)의 증가에 따라 증가하였다. 고정층 반응기의 직렬계에서 XCO2는 68.5%(T=300 ℃, P=1.0MPa, H2/CO2=3 and SV=1,000 ml/gcat.hr)로 동일조건의 단일 고정층 반응기의 전환율인 40.8% 보다 증가하였다. 고정층 재순환 반응기에서 이산화탄소의 반응 전환율은 재순환 비(R)의 증가에 따라 증가하였고, 기체 반응물의 총 공간속도(SVT)가 증가함에 따라 SVT가 5,000 ml/gcat.hr 부근에서 최대값을 나타내었다. 재순환 반응기에서 얻은 최대 XCO2는 75.6%(T=300 ℃, P=1.0 MPa, H2/CO2=3, R=6 and SVT=4,000 ml/gcat.hr)로 나타났다. 이산화탄소의 수소화 반응 전환율의 결정에는 반응가스의 재순환 비율, 생성된 수증기와 액상탄화수소의 효과적인 분리와 반응가스의 촉매량에 대한 체류시간 그리고 이 반응의 평형 전환율이 주요인자로 나타났다.
A catalytic fixed-bed recycle reactor was proposed to increase the level of reaction conversion in conducting the hydrogenation of CO2. The hydrogenation of CO2 was carried out over Fe-K/Al2O3 catalyst. The conversion of carbon dioxide (XCO2) increased with increasing reaction temperature and modified residence time (τmod) in the fixed bed single reactor. In_x000D_
series reactors, the XCO2 increased up to the level of 68.5% (T=300 ℃, P=1.0 MPa, H2/CO2=3 and SV=1,000 ml/gcat.hr) in comparison with the level of 40.8% in the fixed bed single reactor at the same conditions. The XCO2 increased with increasing recycle ratio(R) and exhibited a maximum value with increasing total space velocity (SVT). The maximum XCO2 was the level of 75.6% (T=300 ℃, P=1.0 MPa, H2/CO2=3, R=6 and SVT=4,000 ml/gcat.hr) in the recycle reactor when the SVT was 5,000 ml/gcat.hr. From the results of this study, it was found that the recycle ratio of reactant gas, effective separation of water vapor and liquid hydrocarbon, modified residence time and equilibrium conversion level of the reaction were important factors to determine the conversion level of the hydrogenation of carbon dioxide.
References
Fujimoto K, Omata K, Nozaki O, Han Y, Energy Conv. Manag., 33, 529 (1992)
Inui T, Hara H, Takeguchi T, Ichino K, Kim JB, Iwamoto S, Pu SB, Energy Conv. Manag., 38, S385 (1997)
Park YK, Park KC, Ihm SK, Catal. Today, 44(1-4), 165 (1998)
Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW, Appl. Catal. A: Gen., 186(1-2), 201 (1999)
Riedel T, Schaub G, Jun KW, Lee KW, Ind. Eng. Chem. Res., 40(5), 1355 (2001)
Dry ME, Appl. Catal. A: Gen., 138(2), 319 (1996)
Satterfield CN, Huff GA, Stenger HG, Carter JL, Madon RJ, Ind. Eng. Chem. Fundam., 24, 450 (1985)
Steynberg AP, Espinoza RL, Jager B, Vosloo AC, Appl. Catal. A: Gen., 186(1-2), 41 (1999)
Yan SR, Jun KW, Hong JS, Choi MJ, Lee KW, Appl. Catal. A: Gen., 194-195, 63 (2000)
Choi PH, Jun KW, Lee SJ, Choi MJ, Lee KW, Catal. Lett., 40(1-2), 115 (1996)
Nam SS, Lee SJ, Kim H, Jun KW, Choi MJ, Energy Conv. Manag., 38, S397 (1997)
Nam SS, Kim H, Kishan G, Choi MJ, Lee KW, Appl. Catal. A: Gen., 179(1-2), 155 (1999)
Hu YC, Hydrocarb. Process., May, 88 (1983)
Kim J, Moon I, Joo O, Han S, HWAHAK KONGHAK, 37(5), 670 (1999)
Raje A, Inga JR, Davis BH, Fuel, 76, 273 (1997)
Luyben WL, Ind. Eng. Chem. Res., 39(6), 1529 (2000)
Kim JS, Kim HK, Lee SB, Choi MJ, Lee KW, Kang Y, Korean J. Chem. Eng., 18(4), 463 (2001)
Hwang JS, Jun KW, Lee KW, Appl. Catal. A: Gen., 208(1-2), 217 (2001)
Inui T, Hara H, Takeguchi T, Ichino K, Kim JB, Iwamoto S, Pu SB, Energy Conv. Manag., 38, S385 (1997)
Park YK, Park KC, Ihm SK, Catal. Today, 44(1-4), 165 (1998)
Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW, Appl. Catal. A: Gen., 186(1-2), 201 (1999)
Riedel T, Schaub G, Jun KW, Lee KW, Ind. Eng. Chem. Res., 40(5), 1355 (2001)
Dry ME, Appl. Catal. A: Gen., 138(2), 319 (1996)
Satterfield CN, Huff GA, Stenger HG, Carter JL, Madon RJ, Ind. Eng. Chem. Fundam., 24, 450 (1985)
Steynberg AP, Espinoza RL, Jager B, Vosloo AC, Appl. Catal. A: Gen., 186(1-2), 41 (1999)
Yan SR, Jun KW, Hong JS, Choi MJ, Lee KW, Appl. Catal. A: Gen., 194-195, 63 (2000)
Choi PH, Jun KW, Lee SJ, Choi MJ, Lee KW, Catal. Lett., 40(1-2), 115 (1996)
Nam SS, Lee SJ, Kim H, Jun KW, Choi MJ, Energy Conv. Manag., 38, S397 (1997)
Nam SS, Kim H, Kishan G, Choi MJ, Lee KW, Appl. Catal. A: Gen., 179(1-2), 155 (1999)
Hu YC, Hydrocarb. Process., May, 88 (1983)
Kim J, Moon I, Joo O, Han S, HWAHAK KONGHAK, 37(5), 670 (1999)
Raje A, Inga JR, Davis BH, Fuel, 76, 273 (1997)
Luyben WL, Ind. Eng. Chem. Res., 39(6), 1529 (2000)
Kim JS, Kim HK, Lee SB, Choi MJ, Lee KW, Kang Y, Korean J. Chem. Eng., 18(4), 463 (2001)
Hwang JS, Jun KW, Lee KW, Appl. Catal. A: Gen., 208(1-2), 217 (2001)