ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

활성탄에 의한 사염화탄소 흡착공정에서 잔존수분의 영향

The Effect of Residual Water on the Adsorption Process of Carbon Tetrachloride by Activated Carbon Pellet

전남대학교 환경공학과, 광주 500-757 1전남대학교 화학공학과, 광주 500-757
Department of Environmental Engineering, Chonnam National University, Gwangju 500-757, Korea 1Department of Chemical Engineering, Chonnam National University, Gwangju 500-757, Korea
sjkim@chonnam.ac.kr
HWAHAK KONGHAK, December 2002, 40(6), 694-702(9), NONE
downloadDownload PDF

Abstract

활성탄은 산업분야에서 촉매로도 사용되고 용제 회수, 가스 분리, 그리고 악취제거 등 다양한 용도로 사용되고 있다. 본 연구에서는 입상활성탄에서 CTC(Carbon Tetrachloride, CCl4)의 흡착능에 따른 잔존수분의 영향을 연구하였다. 고정층 흡착탑에서 CTC의 입구농도, 유속변화에 따른 파과곡선과 흡착량의 변화 및 활성탄의 잔존수분 탈착특성도 함께 연구하였다. 활성탄의 잔존수분량은 0에서 20%(w/w)범위에 있었으며, 모든 실험은 298.15 K에서 수행하였으며 활성탄에 대한 사염화탄소의 흡착평형실험결과는 Langmuir등온식으로 잘 묘사되었다. 활성탄의 잔존 수분량이 증가함에 따라 CCl4의 흡착량은 감소하였으며 사염화탄소의 흡착에 따른 잔존수분의 탈착은 지수적으로 감소되었고, LDF(linear driving force)모델을 이용하여 파과곡선을 잘 모사할 수 있었다.
Activated carbons have been used as adsorbents in various industrial application, such as solvent recovery, gas separation, deodorization, and catalysts. In this study, the effects of residual water on the activated carbon adsorbent surface on the adsorption capacity of CCl4 were investigated. Adsorption behavior in a fixed bed was studied in terms of feed concentration, flow rate, breakthrough curve and adsorption capacity for CCl4. Desorption characteristics of residual water on activated carbon were also studied. The water contents of the activated carbon were varied in the range of 0-20%(w/w) and all experiments were performed at 298.15 K. The adsorption equilibrium data CCl4 on the activated carbon were well expressed by Langmuir isotherm. The adsorption capacity of CCl4 decreased with increasing residual water content. Desorption of residual water in activated carbon decreased expotentially with CCl4 adsorption. The obtained breakthrough curves using LDF(linear driving force) model represented our experimental data.

References

Mukhopadhyay N, Moreti EC, "Current & Potential Future Industrial Practices for Reducing and Controlling Volatile Organic Compounds," American Institute of Chemical Engineers, New York (1993)
Budavari S, "The Merck Index," 11th, Merck & Co. Inc., New Jersey (1989)
Rudy EN, Carroll LA, Chem. Eng. Prog., 89, 28 (1994)
Hwang KS, Choi* DK, Gong SY, HWAHAK KONGHAK, 36(2), 159 (1998)
Parmele CS, O'Connell WL, Basdekis HS, Chem. Eng., 86, 58 (1979)
Barnebey HL, Chem. Eng. Prog., 67, 49 (1971)
Lovett WD, Cunniff FT, Chem. Eng. Prog., 70, 43 (1974)
Yang RT, "Gas Separation by Adsorption Process," Butterworths, Boston (1987)
Ruthven DM, "Principles of Adsorption and Adsorption Processes," Wiley, New York (1984)
Cicerone RJ, Stolarski RS, Walters S, Science, 185, 1165 (1974) 
Wolf K, Yezdani A, Yates P, J. Air Wastedmanage Assoc., 41, 1055 (1991)
Nelson GO, Correia AN, Harder CA, Am. Ind. Hyg. Assoc. J., 37, 280 (1976)
Okazaki M, Tamon H, Toei R, J. Chem. Eng. Jpn., 11, 209 (1978)
Jonas LA, Sansone EB, Farris TS, Am. Ind. Hyg. Assoc. J., 46, 20 (1985)
Werner MD, Am. Ind. Hyg. Assoc. J., 46, 585 (1985)
Spirey J, J. Environ. Prog., 7, 31 (1988)
Jang BH, Lee SS, Yeon TH, Yie JE, Korean J. Chem. Eng., 15(5), 516 (1998)
Gong R, Keener TC, J. Air Waste Mgmt. Assoc., 43, 864 (1993)
Chou MS, Chiou JH, J. Environ. Eng.-ASCE, 5, 437 (1997)
Delage F, Pre P, Cloirec DL, J. Environ. Eng.-ASCE, 2, 1160 (1999)
Biron E, Evans MJB, Carbon, 36, 1191 (1998) 
Lee CH, Yang J, Kim CW, Cho CH, Lee HJ, HWAHAK KONGHAK, 35(1), 69 (1997)
McKay G, Blair HS, Hindon A, Ind. J. Chem., 28A, 356 (1989)
Wakao N, Funazkri T, J. Chem. Eng. Sci., 33, 1375 (1978) 
Karger J, Ruthven DM, "Diffusion in Zeolites and Other Microporous Solids," Wiley, New York (1992)
Malek A, Farooq S, AIChE J., 43(3), 761 (1997) 
Huang CC, Fair JR, AIChE J., 34, 1861 (1988) 
Edwards MF, Richardson JF, J. Chem. Eng. Sci., 23, 109 (1968) 
Dean JA, "Lange's Handbook of Chemistry," McGraw-Hill, New York (1999)
Rackett HG, J. Chem. Eng. Data, 15, 514 (1970) 
McCabe WL, Smith JC, Harriott P, "Unit Operations of Chemical Engineering," McGraw-Hill, New York (1993)
Moon H, Lee WK, J. Chem. Eng. Sci., 41, 1995 (1986) 
Moon H, Lee WK, J. Chem. Eng. Sci., 43, 1269 (1988) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로